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Let (G, ) be a group and H < G. We give two partitions of G by defining
the following equivalence relations. Here G may be finite or infinite order.

o Let define the relation ~; on G by a~; b< a b € H. Then ~jis
an equivalence relation on G.

o Similarly, the relation ~gon G defined by a ~g b <> ab~! € H is an
equivalence relation on G.

The equivalence relation ~defines a partition on G. For a € G,
3 = {xeGla~ x}
= {xGG\afler}
= {xGG\aflx:h;ﬂhEH}
{ah | he H}
= aH.

Similarly,
Ha={ha|he H}.
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Cosets

Let (G, ) be a group and H < G.

® The subset aH = {ah | h € H} of G is called the left coset of H in
G (containing a).

@ The subset Ha = {ha | h € H} of G is called the right coset of H in
G.

v

Remark:

o If G is an abelian group, then aH = Ha.
eeH=H

@ The partition of Z into cosets of nZ is equal to the partition of Z
into residue classes modulo n.
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Examples:
1. The cosets of 3Z are

32z = {...,—3,0,3,...}
143Z = {...,-2,1,4,...}
243Z = {...,—1,2,5...}.

Thus
3Z2U1+4+3Z2ZU2+37Z = Z.

Since Z is abelian the left coset is also a right coset.
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2. The partition of Zginto cosets of the subgroup H = {0,3} are

Thus

H {0,3}
1+ H {14}
2+H = {2,5}.

HULl+HU2+H = Zs.
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The Lagrange's Theorem

Now we give some important theorems which allows us to prove the
Lagrange's Theorem.

Let (G,-) be a group and H < G. For a,b € G,

(i) aH = bH& b lacH
(i) Ha = Hb<ab™* € H
(iif)y aH = H<& a€H.

Theorem

Let (G,-) be a group and H < G. Then the elements of H are in

one-to-one correspondence with the elements of any left (right) coset of H
inG.

| A\

v

That is, the function f : I-hl — aH is1—1 and onto. Thus
|H| = |aH| = |Hal.
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The Lagrange's Theorem

Let (G,-) be a group and H < G. Then there is a one-to-one
correspondence of the set of left cosets of H in G onto the set of right
cosets of H in G.

Thatis, let L:={aH | a€ G} and R:= {Ha | a € G} be the sets of all
left and right cosets of H in G, respectively. Then

f: L—R
aH — Ha1

is 1 — 1 and onto. Thus there are the same number of left cosets as the
right cosets.
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Definition

Let (G, -) be a group and H < G.Then the number of distinct left (right)
cosets, written [G : H], of H in G is called the index of H in G.

o If G is finite = [G : H] is finite.
e If G is infinite = [G : H] may be finite or infinite.

Examples:
1. [Z:nZ]=n
2.Q:Z] =0
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The Lagrange's Theorem

Theorem (The Lagrange's Theorem)

Let H be a subgroup of a finite group G. Then |H| | |G]|.

Proof of Synopsis:

@ Since G is finite, the number of left cosets of H in G is finite.
@ G is disjoint union of left cosets of H
@ Each left cosets has as many elements as H
@ This gives
|G| =[G : H].[H]

which implies |H| | |G| .
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The Lagrange's Theorem

Corollary

© Every group of prime order is cyclic.

@ Let (G, ) be a group of order n. Then fora € G, o(a) | n and
a" =e.

© Let H and K be finite subgroups of a group G. Then

[HIIK]

HK| = .
IHKI = THAK]
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The Lagrange's Theorem

Remark: A natural question can be asked as "The converse of Lagrange’s
theorem is true?" That is, if G is a group of order n, and m | n , then is
there any subgroup of order m?

@ From now on, we know that it is true for finite cyclic groups .

o Later we will see that it is true for abelian groups. But we will give a
contrary example for nonabelian groups. In particular, the alterne
group As (|As| = 12) has no subgroup of order 6, although 6 | |As].
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