Lecture 7: Normal Subgroups and Factor Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Ali Bülent Ekin, Elif Tan (Ankara University) Normal Subgroups and Factor Groups

Lecture 7: Normal Subgroups and Factor Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Ali Bülent Ekin, Elif Tan (Ankara University) Normal Subgroups and Factor Groups

Normal Subgroups

We know that if H is a subgroup of a group G, then G can be written as a disjoint union of distinct left (right) cosets of H in G. If left cosets are the same as right cosets, we call such subgroups as normal.

Definition (Normal Subgroup)

Let G be a group. A subgroup H of G is called a **normal subgroup** of G, written as $H \trianglelefteq G$, if aH = Ha for all $a \in G$. That is,

$$H \trianglelefteq G \Leftrightarrow aH = Ha.$$

Note that aH = Ha does not always mean that ah = ha for all $h \in H$, $a \in G$.

Examples:

- **1.** $\{e\} \trianglelefteq G$ (trivial normal subgroup)
- **2.** $G \trianglelefteq G$ (proper normal subgroup)
- **3.** *M*(*G*) ≤ *G*

Theorem (Normal Subgroup Criterias)

Let G be a group and let $H \leq G$. Then the followings are equivalent conditions for H to be a normal subgroup of G:

1
$$ghg^{-1} \in H$$
 for all $g \in G$ and all $h \in H$.

2)
$$gHg^{-1} = H$$
 for all $g \in G$.

3 gH = Hg for all $g \in G$.

Theorem

Let G be an **abelian** group and let $H \leq G$. Then $H \leq G$.

Example: Every subgroup of \mathbb{Z} is of form $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$. Since \mathbb{Z} is an abelian group, every subroup of \mathbb{Z} is normal.

Normal Subgroups

Theorem

Let G be a group and let $H, K \trianglelefteq G$. Then

 $\bullet H \cap K \trianglelefteq G$

- 2 HK ≤ G
- $IK = \langle H \cup K \rangle .$

Remark: Let G be a group.

 If H ≤ G and K ≤ G ⇒ HK need not be a subgroup of G. Let H ≤ G and K ≤ G. Then

$$HK \leq G \Leftrightarrow HK = \langle H \cup K \rangle \Leftrightarrow HK = KH$$

Let $H \leq G$ and $K \leq G$. If G is abelian $\Rightarrow HK \leq G$.

- If $H \trianglelefteq G$ and $K \le G \Rightarrow HK \le G$
- If $H \leq G$ and $K \leq G \Rightarrow HK \leq G$
- If $H \trianglelefteq G$ and $K \trianglelefteq G \Rightarrow HK \trianglelefteq G$

- Let G be a group and let $H, K \leq G$ and $H \cap K = \{e\}$. Then hk = kh for all $h \in H$ and $k \in K$.
- Let G be a group and let $H \leq G$. If [G : H] = 2, then $H \leq G$.
- If H is the only subgroup of order n in a group G, then $H \trianglelefteq G$.

Normal Subgroups

• Let G be a cyclic group. Then G is abelian. Thus every subgroup of G is normal.

Now we determine all normal subgroups of \mathbb{Z}_n . Let N be a normal subgroup of \mathbb{Z}_n . We know that each subgroup of \mathbb{Z}_n is cyclic, since $\mathbb{Z}_n = \langle \overline{1} \rangle$. Hence, $N = \langle \overline{a} \rangle$ is a normal subgroup of $\mathbb{Z}_n \Leftrightarrow a \mid n$. **Example:** Find all normal subgroups of \mathbb{Z}_{12} . $N = \langle \overline{a} \rangle$ is a normal subgroup $\mathbb{Z}_{12} \Leftrightarrow a \mid 12$. Thus the normal subgroups of \mathbb{Z}_{12} are

$$\begin{array}{rcl} \langle \overline{1} \rangle &=& \mathbb{Z}_{12} \\ \langle \overline{2} \rangle &=& \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} \\ \langle \overline{3} \rangle &=& \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\} \\ \langle \overline{4} \rangle &=& \{\overline{0}, \overline{4}, \overline{8}\} \\ \langle \overline{6} \rangle &=& \{\overline{0}, \overline{6}\} \\ \langle \overline{12} \rangle &=& \langle \overline{0} \rangle = \{\overline{0}\} \,. \end{array}$$

Factor Groups

Let G be a group and $H \leq G$. For $a, b \in H$, the relation \sim defined by " $a \sim b \Leftrightarrow a^{-1}b \in H$ " is an equivalence relation on G. Let denote the set of all equivalence classes as

$$G/H := \{aH \mid a \in G\}$$
.

Theorem

Let G be a group and $H \supseteq G$. Define a binary operation \odot on G/H by

 $(aH) \odot (bH) := (ab) H$

for aH, $bH \in G/H$. Then $(G/H, \odot)$ is a group.

Definition The group $(G/H, \odot)$ is called the factor (quotient) group of G by H. Ali Bulent Ekin, Elif Tan (Ankara University) Normal Subgroups and Factor Groups 8 / 10

Factor Groups

Remarks:

• If G is a commutative group, then G/H is also commutative. For all $aH, bH \in G/H$,

$$(aH)(bH) = (ab)H = (ba)H = (bH)(aH)$$

- If G is a cyclic group and $H \leq G$. Then G/H is cyclic.
- If G is a group and G/M(G) is cyclic, then G is commutative. Since Q_8 is not commutative, then $Q_8/M(Q_8)$ is not cyclic. Also $M := M(Q_8) = \{\pm 1\}$ and

$$Q_{8}/M(Q_{8}) = \{M, iM, jM, kM\}$$
.

Since there is no element of order 4 in $Q_8/M(Q_8)$, $Q_8/M(Q_8)$ is not cyclic.

Note that every subgroup of Q_8 is normal.

 Let G be a group and N ≤ G. Then every subgroup of G/N is of the form K/N where N ⊆ K ≤ G. That is,

$$\begin{array}{rcl} K/N &\leq & G/N \; ; \; N \subseteq K \leq G \\ K/N &\trianglelefteq & G/N \; ; \; N \subseteq K \trianglelefteq G. \end{array}$$

For details, see the Correspondence Theorem.

• G is simple group if its only normal subgroups are $\{e\}$ and G.