Lecture 8: Group Homomorphisms and Isomorphism Theorems

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Group Homomorphisms

Definition

Let (G, *) and (G', *') be two groups. A function $f : G \to G'$ is called a **homomorphism** from G into G' if for all $a, b \in G$,

$$f(a * b) = f(a) *' f(b).$$

- If f is one-to-one, then f is called a monomorphism.
- If f is onto, then f is called an **epimorphism**.(G' is called the **homomorphic image** of G).
- If f is one-to-one and onto, then f is called an isomorphism. The groups G and G'are called isomorphic and denoted by G
 G'.
- An isomorphism from the ring G onto G, is called an **automorphism**.
- Let $f : G \to G'$ be a group homomorphism. Then $Kerf := \{g \in G \mid f(g) = e'\} = f^{-1}(\{e'\})$ is called the **kernel** of f, $f(G) := \{f(g) \mid g \in G\}$ is called the **image** of f.

Theorem

Let $f: G \to G'$ be a group homomorphism. Then we have 1. f(e) = e'. 2. $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$. 3. If $H \leq G$, then $f(H) \leq G'$. 4. If $H' \leq G'$, then $f^{-1}(H') < R$. 5. If $N \leq G$ and f is **onto**, then $f(N) \leq G'$. 6. If $N' \trianglelefteq G'$, then $f^{-1}(N') \triangleleft G$. 7. Kerf \triangleleft G. 8. Ker $f = \{e\} \Leftrightarrow f$ is one-to-one. 9. If G is commutative, then f(G) is commutative. 10. If G is commutative and f is **onto**, then G' is commutative. 11. If $a \in G$ such that $\circ(a) = n$, then $\circ(f(a)) \mid n$.

Group Homomorphisms

Examples:

1. Let $f: G \to G'$, f(a) = e' for all $a \in G$. Then f is a (trivial)homomorphism such that Kerf = G.

2. Let f be an identity map. Then f is an isomorphism such that $Kerf = \{e\}$.

3. Let $f : \mathbb{Z} \to 2\mathbb{Z}$, f(a) = 2a for all $a \in \mathbb{Z}$. Then $(\mathbb{Z}, +) \simeq (2\mathbb{Z}, +)$.

4. Let $f : \mathbb{Z}_6 \to \mathbb{Z}_{10}$, $f(\overline{a}) = 5\overline{a}$ for all $\overline{a} \in \mathbb{Z}_6$. Then f is a homomorphism with $Kerf = \{\overline{0}, \overline{2}, \overline{4}\}$.

5. Let $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, f(a) = (a, 0) for all $a \in \mathbb{Z}$. Then f is a homomorphism with Ker $f = \{0\}$.

6. No homomorphism $\mathbb{Z}_4 \times \mathbb{Z}_4 \to \mathbb{Z}_8 \times \mathbb{Z}_2$ since no element of order 8 in $\mathbb{Z}_4 \times \mathbb{Z}_4$.

Theorem (Natural Homomorphism)

Let G be a ring and $N \leq G$. Then the function $\gamma : G \to G/N$ defined by $\gamma(g) = gN$ is an epimorphism with Ker $\gamma = N$. The homomorphism γ is called the **natural homomorphism** of G onto G/N.

Note that

$$\begin{array}{rcl} {\it Kerf} & = & \{ a \in G \mid f \ (a) = e_{G/N} \} \\ & = & \{ a \in G \mid aN = N \} \\ & = & \{ a \in G \mid a \in N \} = N. \end{array}$$

Example: The function $\gamma : \mathbb{Z} \to \mathbb{Z}/\langle n \rangle$ defined by $\gamma(a) = a + \langle n \rangle$ for all $a \in \mathbb{Z}_n$, is the natural homomorphism of \mathbb{Z} onto $\mathbb{Z}/\langle n \rangle$.

Theorem

Let $f : G \to G'$ be a group isomorphism. Then we have 1. $f^{-1} : G' \to G$ is a group isomorphism. 2. $\circ(a) = \circ(f(a))$ for all $a \in G$. 3. G is a commutative group $\Leftrightarrow G'$ is commutative group. 4. G is a torsion group $\Leftrightarrow G'$ is a torsion group. 5. G is a cyclic group $\Leftrightarrow G'$ is a cyclic group.

Group Isomorphisms

Examples:

1. Let $f : \mathbb{R} \to \mathbb{R}^+$, $f(a) = e^a$ for all $a \in \mathbb{R}$. Then $(\mathbb{R}, +) \simeq (\mathbb{R}^+, .)$.

2. $(\mathbb{Z},+)\ncong (\mathbb{Q},+)$ since \mathbb{Z} is cyclic, but \mathbb{Q} is not cyclic.

3. $(\mathbb{R}^*, .) \ncong (\mathbb{C}^*, .)$ since \mathbb{R}^* does not have any element of order 4, but $\circ(i) = 4$ in \mathbb{C}^* .

4. $(Q, +) \ncong (Q^*, .)$ since every nonzero element in Q has infinite order, but $\circ (-1) = 2$ in Q^* .

5. $(Q, +) \ncong (Q/\mathbb{Z}, +)$ since every nonzero element in Q has infinite order, but Q/\mathbb{Z} has not.

6.
$$(U_8, .) \simeq (U_{12}, .)$$
 where $U_n = \{\overline{a} \in \mathbb{Z}_n \mid \text{gcd}(a, n) = 1\}$.

7. $(U_8, .) \ncong (U_{10}, .)$ since $U_8 = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is not cyclic, but $U_{10} = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ is cyclic.

Isomorphism Theorems

The following theorem also known as **the fundamental homomorphism theorem**.

Theorem (First Isomorphism Theorem)

Let $f : G \to G'$ be a homomorphism with Kerf = N. Then the function $\mu : G/N \to f(G)$ defined by $\mu(gN) = f(g)$ is an isomorphism; i.e. $G/\text{Kerf} \simeq f(G)$. Moreover, if $\gamma : G \to G/N$ is the natural homomorphism, then $f(g) = \mu\gamma(g)$, for each $g \in G$.

Example: Let $f : \mathbb{Z} \to \mathbb{Z}_n$, $f(a) = \overline{a}$ for all $a \in \mathbb{Z}$. Then f is an epimorphism such that

Kerf =
$$\{a \in \mathbb{Z} \mid f(a) = \overline{0}\} = \{a \in \mathbb{Z} \mid \overline{a} = \overline{0}\}$$

= $\{a \in \mathbb{Z} \mid a \equiv 0 \pmod{n}\} = \{nk \mid k \in \mathbb{Z}\} = n\mathbb{Z} = \langle n \rangle.$

From 1. isomorphism theorem, $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$. Moreover, let $\gamma : \mathbb{Z} \xrightarrow{natural \ hom.} \mathbb{Z}/\langle n \rangle$, then we have $f = \mu \circ \gamma$ st. $\mu : \mathbb{Z}/\langle n \rangle \xrightarrow{iso.} \mathbb{Z}_n$.

Isomorphism Theorems

Theorem (Second Isomorphism Theorem)

Let $H \leq G$ and $N \leq G$. Then

 $H/(H \cap N) \simeq (HN)/N.$

Proof of synopsis: Define $f : H \to (HN) / J$ by f(h) = hN. It is obvious that f is an epimorphism with

$$extsf{Kerf} = \left\{h \in H \mid f\left(h
ight) = e_{(HN)/N}
ight\} = \left\{h \in H \mid hN = N
ight\} = H \cap N.$$

From 1. isomorphism theorem, $H/(H \cap N) \simeq (HN)/N$. **Example:** Let $H = 6\mathbb{Z} \leq \mathbb{Z}$ and $N = 10\mathbb{Z} \leq \mathbb{Z}$.

$$\begin{array}{rcl} H+N &=& 2\mathbb{Z} \Rightarrow (H+N)\,/\,N = 2\mathbb{Z}/10\mathbb{Z} = \{2k+10\mathbb{Z} \mid k \in \mathbb{Z}\} \\ &=& \{0+10\mathbb{Z}, 2+10\mathbb{Z}, 4+10\mathbb{Z}, 6+10\mathbb{Z}, 8+10\mathbb{Z}\} \\ H\cap N &=& 30\mathbb{Z} \Rightarrow H/\,(H\cap N) = 6\mathbb{Z}/30\mathbb{Z} = \{6k+30\mathbb{Z} \mid k \in \mathbb{Z}\} \\ &=& \{0+30\mathbb{Z}, 6+30\mathbb{Z}, 12+30\mathbb{Z}, 18+30\mathbb{Z}, 24+30\mathbb{Z}\}. \end{array}$$

Theorem (Third Isomorphism Theorem)

Let $H \trianglelefteq G$ and $K \trianglelefteq G$. such that $K \subseteq H$. Then

 $(G/K)/(H/K) \simeq G/H.$

Proof of synopsis: Define $f : G/K \to G/H$ by f(gK) = gH. It is obvious that f is an epimorphism with

$$\begin{array}{rcl} \mathsf{Kerf} &=& \{\mathsf{g}\mathsf{K} \in \mathsf{G}/\mathsf{K} \mid \mathsf{f}(\mathsf{g}\mathsf{K}) = \mathsf{e}_{\mathsf{G}/\mathsf{H}}\} \\ &=& \{\mathsf{g}\mathsf{K} \in \mathsf{G}/\mathsf{K} \mid \mathsf{g}\mathsf{H} = \mathsf{H}\} \\ &=& \{\mathsf{g}\mathsf{K} \in \mathsf{G}/\mathsf{K} \mid \mathsf{g} \in \mathsf{H}\} = \mathsf{H}/\mathsf{K}. \end{array}$$

From 1. isomorphism theorem, $(G/K) / (H/K) \simeq G/H$.

Example: $(\mathbb{Z}/12\mathbb{Z}) / (3\mathbb{Z}/12\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z}$.

Theorem (Correspondence Theorem)

Let $f : G \to G'$ be an epimorphism. Then there is a one-to-one correspondence between the normal subgroups of G containing Kerf and the normal subgroups of G'. That is, if $N \trianglelefteq G$ such that Kerf $\subseteq N$, then the corresponding normal subgroup is $f(N) \trianglelefteq G'$ and if $N' \trianglelefteq G'$, then the corresponding normal subgroup is $f^{-1}(N') = \{x \in G \mid f(x) \in N'\} \trianglelefteq G$.

By Correspondence Theorem,

- There is a one-to-one correspondence between the normal subgroups of G containing N and the normal subgroups of the quotient group G/N.
- If $N \leq G$. Then every subgroup of G/N is of the form K/N where $N \subseteq K \leq G$. That is,

$$\begin{array}{rcl} K/N & \leq & G/N \Leftrightarrow N \subseteq K \leq G \\ K/N & \trianglelefteq & G/N \Leftrightarrow & N \subseteq K \triangleleft G, \end{array}$$

Example: Consider the epimorphism $f: \mathbb{Z} \to \mathbb{Z}_{12}$ with $Kerf = 12\mathbb{Z}$.

All normal subroups of \mathbb{Z} containing $12\mathbb{Z}$ are $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 3 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$, $\langle 12 \rangle$. All normal subroups of \mathbb{Z}_{12} are $\langle \overline{0} \rangle$, $\langle \overline{1} \rangle$, $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$, $\langle \overline{4} \rangle$, $\langle \overline{6} \rangle$.

Thus we have

$$\begin{array}{lll} \langle 1 \rangle & \leftrightarrow & \left\langle \overline{1} \right\rangle, & \left\langle 2 \right\rangle \leftrightarrow \left\langle \overline{2} \right\rangle, & \left\langle 3 \right\rangle \leftrightarrow \left\langle \overline{3} \right\rangle, \\ \langle 4 \rangle & \leftrightarrow & \left\langle \overline{4} \right\rangle, & \left\langle 6 \right\rangle \leftrightarrow \left\langle \overline{6} \right\rangle, & \left\langle 12 \right\rangle \leftrightarrow \left\langle \overline{0} \right\rangle. \end{array}$$

《曰》 《圖》 《臣》 《臣》