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Group Homomorphisms

Definition

Let (G, %) and (G’, ') be two groups. A function f: G — G’ is called a
homomorphism from G into G’ if for all a,b € G,

f(axb)="f(a)* f(b).

@ If f is one-to-one, then f is called a monomorphism.

e If f is onto, then f is called an epimorphism.(G’ is called the
homomorphic image of G).

o If f is one-to-one and onto, then f is called an isomorphism. The
groups G and G'are called isomorphic and denoted by G ~ G’.

@ An isomorphism from the ring G onto G, is called an automorphism.

@ Let f: G — G’ be a group homomorphism. Then
Kerf :=={g € G| f(g)=¢€}=rF"1({e'}) is called the kernel of f,
f(G):={f(g) | g€ G} is called the image of f.
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Properties of Group Homomorphisms

Theorem

Let f : G — G' be a group homomorphism. Then we have
fe)=¢.

f (a_l) = f(a)_1 for all a € G.

IfH< G, then f (H) < G'.

If H' < G, then f~1 (H') < R.

If N < G and f is onto, then f (N) < G'.

IfN' < G', then =1 (N') < G.

Kerf < G.

Ker f = {e} & f is one-to-one.

If G is commutative, then f (G) is commutative.

10. If G is commutative and f is onto, then G’ is commutative.
11. If a € G such that o (a) = n, then o (f (a)) | n.
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Group Homomorphisms

Examples:

l.letf:G— G, f(a)=¢€ forallae G.Then f isa
(trivial)homomorphism such that Kerf = G.

2. Let f be an identity map. Then f is an isomorphism such that
Kerf = {e}.

3. Letf:Z —2Z,f(a)=2aforalla€ Z. Then (Z,+) ~ (2Z,+) .

4. Let f:Ze — Z1o, f(3) =5aforallaec Zg. Then fisa
homomorphism with Kerf = {6, 5,1}.

5. Letf:Z —>ZxZ,f(a)=(a,0)forallacZ. Then f isa
homomorphism with Kerf = {0} .

6. No homomorphism Z4 X Z4 — Zg X Z; since no element of order 8 in
Z4 X Z4.
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Homomorphism Theorems

Theorem (Natural Homomorphism)

Let G be a ring and N < G. Then the function v : G — G /N defined by
v (g) = gN is an epimorphism with Kery = N. The homomorphism 7y is
called the natural homomorphism of G onto G/ N.

Note that
Kerf = {ac G|f(a)=eg/n}

{ae G|aN = N}
= {aeGlaeN}=N.

Example: The function v : Z — Z/ (n) defined by v (a)

= a+ (n) for
all a € Z,, is the natural homomorphism of Z onto Z/ (n) .
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Properties of Group Isomorphisms

Theorem

Let f : G — G’ be a group isomorphism. Then we have

. f1: G — G is a group isomorphism.
o(a)=o(f(a)) forallac G.

. G is a commutative group < G' is commutative group.
. G is a torsion group < G' is a torsion group.

. G is a cyclic group < G’ is a cyclic group.
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Group Isomorphisms

Examples:

1. Let f: R — RT, f(a) =e?foralla€ R. Then (R, +) ~ (R™,.).

2. (Z,+) 2 (Q,+) since Z is cyclic, but Q is not cyclic.
3. (R¥, ) (C*,.) since R* does not have any element of order 4, but
o(i) =4inC*.

4. (Q,+) 2 (Q*,.) since every nonzero element in Q has infinite order,

but o( 1)_2|n Q.

5. (Q,+) £ (Q/Z, +) since every nonzero element in Q has infinite
order, but Q/Z has not.

6. (Us,.) >~ (Ur2,.) where U, ={3a € Z, | gcd(an)=1}.

7. (Us,.) 2 (Ui, .) since Us = {1,5,5,7} is not cyclic, but
Uo = {1,3,7,9} is cyclic.
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Isomorphism Theorems

The following theorem also known as the fundamental homomorphism
theorem.

Theorem (First Isomorphism Theorem)

Let f : G — G' be a homomorphism with Kerf = N. Then the function
u:G/N — f(G) defined by u(gN) = f (g) is an isomorphism; i.e.
G/Kerf >~ f (G). Moreover, if y: G — G/N is the natural
homomorphism, then f (g) = uy (g), for each g € G.

Example: Let f : Z — Z,, f (a) =3 foralla€ Z. Then f is an
epimorphism such that
Kerf = {aeZ|f(a)=0}={acz|a=0}
= {a€Z|a=0(modn)} ={nk | ke Z} =nZ = (n).
From 1. isomorphism theorem, Z /nZ ~ Z.,. Moreover, let
v:Z natural por. Z./ (n), then we have f = poyst. u:2Z/(n) — 50 7.

a — a+(n) a+(n)—a
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Isomorphism Theorems

Theorem (Second Isomorphism Theorem)
Let H< G and N < G. Then

H/ (HNN) ~ (HN) /N.

Proof of synopsis: Define f : H— (HN) /J by f (h) = hN. It is obvious
that f is an epimorphism with

Kerf:{heH|f(h):e(HN)/N}:{h€H|hN:N}:HﬂN.
From 1. isomorphism theorem, H/ (HN N) ~ (HN) /N.
Example: Let H=6Z < Z and N =10Z < Z.
H+N = 2Z= (H+N)/N=2Z/10Z = {2k +10Z | k € Z}
= {0+10Z,2+10Z,4+ 10Z,6 + 10Z,8 + 10Z}
HOAN = 30Z= H/(HNN)=6Z/30Z = {6k +30Z | k € Z}
= {0+ 30Z,6+30Z,12+ 30Z,18 + 30Z,24 + 30Z} .
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Isomorphism Theorems

Theorem (Third Isomorphism Theorem)
Let H1 G and K < G. such that K C H. Then

(G/K)/ (H/K) ~ G/H.

Proof of synopsis: Define f: G/K — G/H by f (gK) = gH. Itis
obvious that f is an epimorphism with

Kerf = {gKeG/K|f(gK)=-ec/H}
= {gK € G/K|gH=H}
{gK € G/K | g € H} = H/K.

From 1. isomorphism theorem, (G/K)/ (H/K) ~ G/H.

Example: (Z/12Z) / (3Z/12Z) ~ Z/3Z.
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Correspondence Theorem

Theorem (Correspondence Theorem)

Let f : G — G’ be an epimorphism. Then there is a one-to-one
correspondence between the normal subgroups of G containing Kerf and
the normal subgroups of G'. That is, if N < G such that Kerf C N, then
the corresponding normal subgroup is f (N) < G’ and if N’ < G, then the
corresponding normal subgroup is f 1 (N') = {x € G| f(x) e N'} < G.

By Correspondence Theorem,

@ There is a one-to-one correspondence between the normal subgroups
of G containing N and the normal subgroups of the quotient group
G/N.

e If N < G. Then every subgroup of G/N is of the form K /N where
N C K < G. That is,

K/IN < G/N &NCK<G

K/N < G/N & NCKJG.
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Correspondence Theorem

Example: Consider the epimorphism f: Z — Zi, with Kerf = 12Z.

a — a

All normal subroups of Z containing 12Z are (1), (2), (3), (4),(6), (12).
All normal subroups of Z1, are <6> , <T> , <§> , <§> , <Z> , <6> .

Thus we have
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