Lecture 9: Permutation Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

- ∢ ∃ ▶

Definition

A **permutation** of a nonempty set A is a function $\sigma : A \rightarrow A$ that is one-to-one and onto. In other words, a pemutation of a set is a rearrangement of the elements of the set.

Theorem

Let A be a nonempty set and let S_A be the collection of all permutations of A. Then (S_A, \circ) is a group, where \circ is the function composition operation.

- The identity element of (S_A, \circ) is the identity permutation $\iota : A \to A, \iota (a) = a$.
- The inverse element of σ is the permutation σ^{-1} such that $(\sigma\sigma^{-1})(\mathbf{a}) = \sigma(\sigma^{-1}(\mathbf{a})) = \iota(\mathbf{a})$.

イロト イヨト イヨト イヨト

Permutation Groups

Definition

The group (S_A, \circ) is called a **permutation group** on *A*.

We will focus on permutation groups on finite sets.

Definition

Let $I_n = \{1, 2, ..., n\}$, $n \ge 1$ and let S_n be the set of all permutations on I_n . The group (S_n, \circ) is called the **symmetric group** on I_n .

Let σ be a permutation on I_n . It is convenient to use the following two-row notation:

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right)$$

Example: Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$$
 and $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$. Then
 $f \circ g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$
 $g \circ f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$

which shows that $f \circ g \neq g \circ f$.

Note that we apply permutation multiplication $f \circ g$ from right to left.

2

イロン イ理と イヨン イヨン

• $|S_n| = n!$

• (S_n, \circ) is non commutative for $n \ge 3$.

. . . .

• $\mathbb{Z}_6 \ncong S_3$ since \mathbb{Z}_6 is commutative but S_3 is not.

•
$$S_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$$

• $S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$
• $S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}.$

イロト イ理ト イヨト イヨト

Definition

Let σ be an element of S_n . Then σ is called a **k-cycle**, written $(i_1 i_2 \dots i_k)$, if $\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_{k-1} & i_k \\ i_2 & i_3 & \cdots & i_k & i_1 \end{pmatrix}.$

• If
$$\sigma = (i_1 i_2 \dots i_k)$$
, then
 $\sigma = (i_1 i_2 \dots i_k) = (i_2 i_3 \dots i_k i_1) = \dots = (i_j i_{j+1} \dots i_k i_1 \dots i_{j-1})$.

- If k = 2, then a k-cycle is called a **transposition**.
- The identity of S_n is denoted (1) or e.
- The order of a cycle is the length of cycle.

Examples:

•
$$S_1 = \{(1)\}$$

• $S_2 = \{(1), (12)\}$
• $S_3 = \left\{ (1), (\underline{123}), (\underline{132}), (\underline{23}), (\underline{13}), (\underline{12}), (\underline{12}) \right\}$
• $\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{array} \right) = (124) (\mathbf{3}) (\mathbf{5}) = (124) = (241) = (412)$
• $\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 1 & 5 \end{array} \right) = (\mathbf{134}) (25) = (25) (134)$

2

イロン イヨン イヨン イヨン

Remark: If two cycle have no common element, then they can commute. But when we multiply two distinct permutations, the cycles may contain common elements so we can not rearrange them.

Example: Let
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132)$$
 and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = (13)$. Then

$$\begin{array}{rcl} fg & = & (\mathbf{132}) \ (\mathbf{13}) = & (\mathbf{12}) \\ gf & = & (\mathbf{13}) \ (\mathbf{132}) = & (\mathbf{23}) \ . \end{array}$$

Also note that

$$\begin{array}{c} (132) (13) \\ {}_2 \leftarrow 3 \leftarrow 1 \\ \mathbf{1} \leftarrow 2 \leftarrow 2 \\ {}_3 \leftarrow 1 \leftarrow 3 \end{array}$$

ヨト イヨト

Definition

Let $\sigma_1, \sigma_2, \ldots, \sigma_k \in S_n$. Then $\sigma_1, \sigma_2, \ldots, \sigma_k$ are called **disjoint** if σ_i moves a, then all other permutations σ_j must fix a for all $a \in I_n$, that is, $\sigma_j(a) = a$ for all $j \neq i, 1 \leq j \leq k$.

- The multiplication of disjoint cycles is commutative.
- Each permutation σ of a set A determines a natural partition on A into the cells with the property

" a
$$\sim$$
 b \Leftrightarrow b $=$ σ^{n} (a) , \exists n \in \mathbb{Z} "

for $a, b \in A$. The relation \sim is equivalence relation and the equivalence classes in A are called the **orbits** of σ .

Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix} = (134) (25)$. Thus orbits of σ are $\overline{1} = \{1, 3, 4\}$ and $\overline{2} = \{2, 5\}$. Note that $\sigma(1) = 3, \sigma^2(1) = 4, \sigma^3(1) = 1$.

- Any permutation e ≠ σ ∈ S_n can be uniquely (up to the order of factors) expressed as a product of disjoint cycles.
- The inverse of a permutation can also be written as a product of disjoint cycles.

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_k \Rightarrow \sigma^{-1} = \sigma_k^{-1} \sigma_{k-1}^{-1} \dots \sigma_1^{-1}$$

$$\sigma_j = (i_1 i_2 \dots i_r) \Rightarrow \sigma_j^{-1} = (i_1 i_r i_{r-1} \dots i_2)$$

So

$$(i_1i_2)^{-1} = (i_1i_2)$$
 and $(i_1i_2)^2 = (1)$

• Let $\sigma \in S_n$ and $\sigma = \sigma_1 \sigma_2 \dots \sigma_k$ be a product of disjoint cycles. If $\circ (\sigma_i) = n_i$ for $i = 1, \dots, k$, then

$$\circ (\sigma) = \operatorname{lcm} (n_1, n_2, \ldots, n_k).$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• Any permutation $\sigma \in S_{n\geq 2}$ can be expressed as a product of transpositions.

$$(1) = (12) (12) (i_1 i_2 \dots i_k) = (i_1 i_k) (i_1 i_{k-1}) \dots (i_1 i_2) = (i_1 i_2) (i_2 i_3) \dots (i_{k-1} i_k).$$

- No permutation can be written both as a product of an even number of transpositions and as a product of odd number of transpositions.
- The representation of σ as a product of transpositions need not be unique, but the number of transpositions in any representations is either even or odd.
- If $\sigma \in S_n$ is a product of even number of transpositions, then σ is called an **even permutation**; otherwise σ is called an **odd permutation**.
- Let $\sigma \in S_n$ is a k-cycle. σ is an even permutation $\Leftrightarrow k$ is odd.
- \bullet The identity permutation is even, since $\left(1\right)=\left(12\right)\left(12\right).$
- Any transposition (ab) can be written as (ab) = (1a) (1b) (1a).

Example: Let f = (1243), g = (1526). Then fg can be written uniquely as a product of disjoint cycles as

$$fg = (1243) (1526) = (1543) (26)$$

$$5 \leftarrow 5 \leftarrow 1$$

$$4 \leftarrow 2 \leftarrow 5$$

$$3 \leftarrow 4 \leftarrow 4$$

$$1 \leftarrow 3 \leftarrow 4$$

$$6 \leftarrow 2$$

$$2 \leftarrow 1 \leftarrow 6$$

Thus fg can be written as a product of transpositions

$$fg = (1543)(26) = (13)(14)(15)(26)$$
.

On the other hand, fg can be written as a product of transpositions

$$fg = (1543)(26) = (13)(14)(15)(12)(16)(12).$$

Definition

The subset of S_n consisting of all even permutations is denoted by A_n . For $n \ge 2$, (A_n, \circ) is a group, called the **alternating group** on I_n .

- $A_n \leq S_n$
- $|A_n| = \frac{n!}{2}$
- Every $\sigma \in A_n$ is a product of three-cycles for $n \ge 3$.
- $A_n \leq S_n$, since $[S_n : A_n] = \frac{n!}{n!/2} = 2$.
- For $n \ge 5$, A_n is the only nontrivial normal subgroup of S_n .
- For $n \neq 4$, A_n is simple group. (Abel Theorem)
- For n = 4, $(1) \trianglelefteq V_4 \trianglelefteq A_4 \trianglelefteq S_4$

・ 何 ト ・ ヨ ト ・ ヨ ト

Alternating Groups

• A₄ has no element of order 6. (This shows that the converse of the Lagrange's theorem need not always hold.)

$$\begin{array}{rcl} A_4 \,/\, V_4 &=& \{ \sigma \,V_4 \mid \sigma \in A_4 \} \\ &=& \{ (1) \,\, V_4, \, (123) \,\, V_4, \, (132) \,\, V_4 \} \end{array}$$

where

۲

$$\begin{array}{rcl} (1) \ V_4 & = & V_4 \\ (123) \ V_4 & = & \{(123) \ , (134) \ , (243) \ , (142) \} \\ (132) \ V_4 & = & \{(132) \ , (234) \ , (124) \ , (143) \} \end{array}$$

ヨト イヨト