Lecture 9: Permutation Groups

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Permutation Groups

Definition

A permutation of a nonempty set A is a function $\sigma: A \rightarrow A$ that is one-to-one and onto. In other words, a pemutation of a set is a rearrangement of the elements of the set.

Theorem

Let A be a nonempty set and let S_{A} be the collection of all permutations of A. Then $\left(S_{A}, \circ\right)$ is a group, where \circ is the function composition operation.

- The identity element of $\left(S_{A}, \circ\right)$ is the identity permutation $\iota: A \rightarrow A, \iota(a)=a$.
- The inverse element of σ is the permutation σ^{-1} such that $\left(\sigma \sigma^{-1}\right)(a)=\sigma\left(\sigma^{-1}(a)\right)=\iota(a)$.

Permutation Groups

Definition

The group $\left(S_{A}, \circ\right)$ is called a permutation group on A.

We will focus on permutation groups on finite sets.

Definition

Let $I_{n}=\{1,2, \ldots, n\}, n \geq 1$ and let S_{n} be the set of all permutations on I_{n}. The group $\left(S_{n}, \circ\right)$ is called the symmetric group on I_{n}.

Let σ be a permutation on I_{n}. It is convenient to use the following two-row notation:

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{array}\right)
$$

Symmetric Groups

Example: Let $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2\end{array}\right)$ and $g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$. Then

$$
\begin{aligned}
& f \circ g=\left(\begin{array}{llll}
1 & 2 & 3 & \mathbf{4} \\
1 & 3 & 4 & \mathbf{2}
\end{array}\right) \circ\left(\begin{array}{llll}
\mathbf{1} & 2 & 3 & 4 \\
\mathbf{4} & 3 & 2 & 1
\end{array}\right)=\left(\begin{array}{llll}
\mathbf{1} & 2 & 3 & 4 \\
\mathbf{2} & 4 & 3 & 1
\end{array}\right) \\
& g \circ f=\left(\begin{array}{llll}
\mathbf{1} & 2 & 3 & 4 \\
\mathbf{4} & 3 & 2 & 1
\end{array}\right) \circ\left(\begin{array}{llll}
\mathbf{1} & 2 & 3 & 4 \\
\mathbf{1} & 3 & 4 & 2
\end{array}\right)=\left(\begin{array}{llll}
\mathbf{1} & 2 & 3 & 4 \\
\mathbf{4} & 2 & 1 & 3
\end{array}\right)
\end{aligned}
$$

which shows that $f \circ g \neq g \circ f$.
Note that we apply permutation multiplication $f \circ g$ from right to left.

Properties of Symmetric Groups

- $\left|S_{n}\right|=n$!
- $\left(S_{n}, \circ\right)$ is non commutative for $n \geq 3$.
- $\mathbb{Z}_{6} \not \neq S_{3}$ since \mathbb{Z}_{6} is commutative but S_{3} is not.
- $S_{1}=\left\{\binom{1}{1}\right\}$
- $S_{2}=\left\{\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\right\}$
$\begin{aligned}-S_{3}=\{ & \left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right), \\ & \left.\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)\right\} .\end{aligned}$

Symmetric Groups

Definition

Let σ be an element of S_{n}. Then σ is called a \mathbf{k}-cycle, written $\left(i_{1} i_{2} \ldots i_{k}\right)$, if

$$
\sigma=\left(\begin{array}{ccccc}
i_{1} & i_{2} & \cdots & i_{k-1} & i_{k} \\
i_{2} & i_{3} & \cdots & i_{k} & i_{1}
\end{array}\right)
$$

- If $\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)$, then

$$
\sigma=\left(i_{1} i_{2} \ldots i_{k}\right)=\left(i_{2} i_{3} \ldots i_{k} i_{1}\right)=\cdots=\left(i_{j} i_{j+1} \ldots i_{k} i_{1} \ldots i_{j-1}\right) .
$$

- If $k=2$, then a k-cycle is called a transposition.
- The identity of S_{n} is denoted (1) or e.
- The order of a cycle is the length of cycle.

Symmetric Groups

Examples:

- $S_{1}=\{(1)\}$
- $S_{2}=\{(1),(12)\}$
- $S_{3}=\{(1), \underbrace{(123)}_{\text {order } 3}, \underbrace{(132)}_{\text {order } 3}, \underbrace{(23)}_{\text {order } 2}, \underbrace{(13)}_{\text {order } 2}, \underbrace{(12)}_{\text {order } 2}\}$
- $\sigma=\left(\begin{array}{lllll}1 & 2 & \mathbf{3} & 4 & \mathbf{5} \\ 2 & 4 & \mathbf{3} & 1 & \mathbf{5}\end{array}\right)=(124)(\mathbf{3})(\mathbf{5})=(124)=(241)=(412)$
- $\sigma=\left(\begin{array}{lllll}\mathbf{1} & 2 & \mathbf{3} & \mathbf{4} & 5 \\ \mathbf{3} & 5 & \mathbf{4} & \mathbf{1} & 2\end{array}\right)=(\mathbf{1 3 4})(25)=(25)(134)$

Symmetric Groups

Remark: If two cycle have no common element, then they can commute. But when we multiply two distinct permutations, the cycles may contain common elements so we can not rearrange them.

Example: Let $f=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)=(132)$ and
$g=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)=(13)$. Then

$$
\begin{aligned}
f g & =(132)(13)=(12) \\
g f & =(13)(132)=(23)
\end{aligned}
$$

Also note that

Symmetric Groups

Definition

Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k} \in S_{n}$. Then $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ are called disjoint if σ_{i} moves a, then all other permutations σ_{j} must fix a for all $a \in I_{n}$, that is, $\sigma_{j}(a)=a$ for all $j \neq i, 1 \leq j \leq k$.

- The multiplication of disjoint cycles is commutative.
- Each permutation σ of a set A determines a natural partition on A into the cells with the property

$$
" a \sim b \Leftrightarrow b=\sigma^{n}(a), \exists n \in \mathbb{Z}^{\prime \prime}
$$

for $a, b \in A$. The relation \sim is equivalence relation and the equivalence classes in A are called the orbits of σ.
Example: $\sigma=\left(\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2\end{array}\right)=(134)(25)$. Thus orbits of σ are $\overline{1}=\{1,3,4\}$ and $\overline{2}=\{2,5\}$. Note that

$$
\sigma(1)=3, \sigma^{2}(1)=4, \sigma^{3}(1)=1
$$

Symmetric Groups

- Any permutation $e \neq \sigma \in S_{n}$ can be uniquely (up to the order of factors) expressed as a product of disjoint cycles.
- The inverse of a permutation can also be written as a product of disjoint cycles.

$$
\begin{aligned}
\sigma & =\sigma_{1} \sigma_{2} \ldots \sigma_{k} \Rightarrow \sigma^{-1}=\sigma_{k}^{-1} \sigma_{k-1}^{-1} \ldots \sigma_{1}^{-1} \\
\sigma_{j} & =\left(i_{1} i_{2} \ldots i_{r}\right) \Rightarrow \sigma_{j}^{-1}=\left(i_{1} i_{\mathbf{r}} i_{\mathbf{r}-\mathbf{1}} \ldots i_{2}\right)
\end{aligned}
$$

So

$$
\left(i_{1} i_{2}\right)^{-1}=\left(i_{1} i_{2}\right) \text { and }\left(i_{1} i_{2}\right)^{2}=(1)
$$

- Let $\sigma \in S_{n}$ and $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ be a product of disjoint cycles. If $\circ\left(\sigma_{i}\right)=n_{i}$ for $i=1, \ldots, k$, then

$$
\circ(\sigma)=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)
$$

Symmetric Groups

- Any permutation $\sigma \in S_{n \geq 2}$ can be expressed as a product of transpositions.

$$
\begin{aligned}
(1) & =(12)(12) \\
\left(i_{1} i_{2} \ldots i_{k}\right) & =\left(i_{1} i_{k}\right)\left(i_{1} i_{k-1}\right) \ldots\left(i_{1} i_{2}\right)=\left(i_{1} i_{2}\right)\left(i_{2} i_{3}\right) \ldots\left(i_{k-1} i_{k}\right) .
\end{aligned}
$$

- No permutation can be written both as a product of an even number of transpositions and as a product of odd number of transpositions.
- The representation of σ as a product of transpositions need not be unique, but the number of transpositions in any representations is either even or odd.
- If $\sigma \in S_{n}$ is a product of even number of transpositions, then σ is called an even permutation; otherwise σ is called an odd permutation.
- Let $\sigma \in S_{n}$ is a k-cycle. σ is an even permutation $\Leftrightarrow k$ is odd.
- The identity permutation is even, since $(1)=(12)(12)$.
- Any transposition $(a b)$ can be written as $(a b)=(1 a)(1 b)(1 a)$.

Symmetric Groups

Example: Let $f=(1243), g=(1526)$. Then $f g$ can be written uniquely as a product of disjoint cycles as

Thus $f g$ can be written as a product of transpositions

$$
f g=(1543)(26)=(13)(14)(15)(26) .
$$

On the other hand, $f g$ can be written as a product of transpositions

$$
f g=(1543)(26)=(13)(14)(15)(12)(16)(12)
$$

Observe that the number of transpositions are different but they are both even.

Alternating Groups

Definition

The subset of S_{n} consisting of all even permutations is denoted by A_{n}. For $n \geq 2,\left(A_{n}, \circ\right)$ is a group, called the alternating group on I_{n}.

- $A_{n} \leq S_{n}$
- $\left|A_{n}\right|=\frac{n!}{2}$
- Every $\sigma \in A_{n}$ is a product of three-cycles for $n \geq 3$.
- $A_{n} \unlhd S_{n}$, since $\left[S_{n}: A_{n}\right]=\frac{n!}{n!/ 2}=2$.
- For $n \geq 5, A_{n}$ is the only nontrivial normal subgroup of S_{n}.
- For $n \neq 4, A_{n}$ is simple group. (Abel Theorem)
- For $n=4$, $(1) \unlhd V_{4} \unlhd A_{4} \unlhd S_{4}$

Alternating Groups

- A_{4} has no element of order 6 . (This shows that the converse of the Lagrange's theorem need not always hold.)

$$
\begin{aligned}
A_{4} / V_{4} & =\left\{\sigma V_{4} \mid \sigma \in A_{4}\right\} \\
& =\left\{(1) V_{4},(123) V_{4},(132) V_{4}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
(1) V_{4} & =V_{4} \\
(123) V_{4} & =\{(123),(134),(243),(142)\} \\
(132) V_{4} & =\{(132),(234),(124),(143)\}
\end{aligned}
$$

