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Permutation Groups

Definition

A permutation of a nonempty set A is a function ¢ : A — A that is
one-to-one and onto. In other words, a pemutation of a set is a
rearrangement of the elements of the set.

Let A be a nonempty set and let Sp be the collection of all permutations of
A. Then (Sa, 0) is a group, where o is the function composition operation.

@ The identity element of (Sa, o) is the identity permutation
1:A—A(a) =a
@ The inverse element of ¢ is the permutation ¢! such that

(007") (@) =0 (07 (a)) = 1(a).
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Permutation Groups

Definition

The group (Sa, o) is called a permutation group on A.

We will focus on permutation groups on finite sets.

Definition

Let [, = {1,2,...,n},n>1and let S, be the set of all permutations on
I,.The group (S,, o) is called the symmetric group on /,.

Let o be a permutation on /. It is convenient to use the following two-row

(ot o - ot
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notation:




Symmetric Groups

12 3 4 12 3 4
Example.Leti‘-(1 3 4 2>andg—<4 3 2 1).Then
fos _ (1234 (1234) (1234
£ = 1342 4 321) \2431
r_ (l234) (1234)\_ (1234
£ — a3 21 1342) \a213
which shows that fog # gof.

Note that we apply permutation multiplication f o g from right to left.
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Properties of Symmetric Groups

o |S,| = n!
@ (S, 0) is non commutative for n > 3.

o Zg % S3 since Zg is commutative but Ss is not.
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cso{(i2) (1))
cs={(153)(331)(513),
(G52 G)GH)

Ali Biilent Ekin, Elif Tan (Ankara University) Permutation Groups



Symmetric Groups

Definition

Let o be an element of S,. Then ¢ is called a k-cycle, written (i1i>... i),
if
ooy e dk—q
az(.l? 1 .k).
b i3 - Ik i

If o = (i1i2 ce ik) , then

o= (i1i2...ik) = (i2i3...iki1) == (ijij+1...iki1...ij_1).
If k =2, then a k-cycle is called a transposition.

The identity of S, is denoted (1) or e.

@ The order of a cycle is the length of cycle.
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Symmetric Groups

Examples:

o S ={(1)}
o S ={(1),(12)}

0 S5 = {(1),(123), (132), (23), (13), (12) }
[ N
order 3 order 3 order 2 order 2 order 2

OU:<; Lzl g i §)=(124><3) (5) = (124) = (241) = (412)
°U:<:1% g z31 z1i §)=<134>(25>=<25)<134)
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Symmetric Groups

Remark: If two cycle have no common element, then they can commute.
But when we multiply two distinct permutations, the cycles may contain
common elements so we can not rearrange them.

1 2 3
Example: Let f = ( 3 1 2 ) = (132) and

1 2 3
g_(3 > 1)-(13).Then

Also note that
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Symmetric Groups

Definition

Let 01,02,...,0 € Sp. Then 01,09, ...,0k are called disjoint if o;
moves a, then all other permutations ¢; must fix a for all a € /,, that is,
oj(a)=aforall j #i,1<j<k.

@ The multiplication of disjoint cycles is commutative.
@ Each permutation o of a set A determines a natural partition on A
into the cells with the property

"a~bs b=0"(a),IneZ"

for a, b € A. The relation ~ is equivalence relation and the
equivalence classes in A are called the orbits of ¢.

(123 45\ .
Example.(T—(3 54 1 2)-(134) (25) . Thus orbits of o

are 1 =1{1,3,4} and 2 = {2,5} . Note that
c(1)=3,02(1)=4,0°(1) =1.
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Symmetric Groups

@ Any permutation e # 0 € S, can be uniquely (up to the order of
factors) expressed as a product of disjoint cycles.

@ The inverse of a permutation can also be written as a product of
disjoint cycles.

o = 0'10'2...0'k:>0'_1 :0;10,11...01_1

oj = (ik...ir) = 07" = (itife-1...72)
So
(1'11.2)71 ) (1112) and (i1i2)2 = (1)

@ Let 0 € S, and 0 = 0105 ...0, be a product of disjoint cycles. If
o(cj) =njfori=1,..., k, then

o(c)=lem (ny, m, ..., ng).
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Symmetric Groups

@ Any permutation o € S,>2 can be expressed as a product of
transpositions.

(1) = (12)(12)
(hiz...ix) = (hix) (hik=1)... (k) = (hi) (ii3) ... (ik—1ik) -

@ No permutation can be written both as a product of an even number
of transpositions and as a product of odd number of transpositions.

@ The representation of ¢ as a product of transpositions need not be
unique, but the number of transpositions in any representations is
either even or odd.

e If r € 5, is a product of even number of transpositions, then o is
called an even permutation; otherwise ¢ is called an odd
permutation.

@ Let 0 € S, is a k-cycle. ¢ is an even permutation < k is odd.

@ The identity permutation is even, since (1) = (12) (12).

@ Any transposition (ab) can be written as (ab) = (1a) (1b) (1a).
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Symmetric Groups

Example: Let f = (1243), g = (1526) .Then fg can be written uniquely
as a product of disjoint cycles as

fg = (1243)(1526) = (1543)(26)

5 «— 5 «— 1
4 — 2 «— 5
3 «— 4 — 4
1 «— 3 «— 3
6 «— 6 «— 2
2 +— 1 «— 6

Thus fg can be written as a product of transpositions
fg = (1543) (26) = (13) (14) (15) (26) .
On the other hand, fg can be written as a product of transpositions
fg = (1543) (26) = (13) (14) (15) (12) (16) (12).

Observe that the number of transpositions are different but they are both
even.
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Alternating Groups

Definition

The subset of S, consisting of all even permutations is denoted by A,. For
n>2, (Ap, o) is a group, called the alternating group on /,.

An < Sy

An =5

Every o € A, is a product of three-cycles for n > 3.

A, 1S, since [S,: Ay = n,”—/'z = 2.

For n > 5, A, is the only nontrivial normal subgroup of S,.
For n # 4, A, is simple group. (Abel Theorem)

Forn=14, (1) I Vy; <A; IS,
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Alternating Groups

@ A, has no element of order 6. (This shows that the converse of the
Lagrange's theorem need not always hold.)

Ay/Vy = {(7'\/4 ‘ O'EA4}
{(1) Vi, (123) Vi, (132) Vi)

where

Ve = V,
(123) Vs = {(123),(134),(243), (142)}
(132) Vs = {(132),(234), (124), (143)}.
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