Lecture 10: Dihedral Groups

Prof. Dr. Ali Bülent EKIN
Doç. Dr. Elif TAN

Ankara University

Dihedral Groups

One can construct a group from any geometric shape by the symmetries of it. The symmetries are the transformations, such as rotation and reflection, that maps the shape onto itself, so it looks the same before and after these transformations.
The group of all transformations under which the object is invariant is called the group of symmetries. When the shape is regular polygon the group is called the dihedral group.

Definition

The n-th dihedral group D_{n} is the group of symmetries of the regular n-gon. ($n \geq 3$)

Dihedral Groups

When we look at the symmetries for a regular n-gon;

- Identity: The transformation which makes no changes is e.
- Rotation: Let the size of the opposite clockwise rotation " r " is $\theta=\frac{360^{\circ}}{n}$, then there exists n-rotations $r, r^{2}, r^{3}, \ldots, r^{n}=e$.
- Reflection: Let consider the reflection " f " w.r.t. the vertical axis, then there exists 2 -reflections $f, f^{2}=e$.
- The remaining symmetries can be obtained by combining r and f as $\left\{r f, r^{2} f, \ldots, r^{n-1} f\right\}$.
- Thus we have $2 n$ different symmetries for a regular n-gon:

$$
\left\{e, r, r^{2}, \ldots, r^{n-1}, f, r f, r^{2} f, \ldots, r^{n-1} f\right\}
$$

which can also be expressed as

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{n-1}\right\rangle
$$

- $\left|D_{n}\right|=2 n$
- D_{n} is non commutative, since $r f \neq f r$.

Dihedral Groups

Example: Find the symmetry group for equilateral triangle.

$$
D_{3}=\left\{e, r, r^{2}, f, r f, r^{2} f\right\}
$$

$$
\begin{array}{rll}
e & \leftrightarrow & (1) \\
r & \leftrightarrow & (123) \\
r^{2} & \leftrightarrow & (132) \\
f & \leftrightarrow & (23) \\
r f & \leftrightarrow & (13) \\
r^{2} f & \leftrightarrow & (12)
\end{array}
$$

Thus $D_{3} \simeq S_{3}$.

Dihedral Groups

Example: Find the symmetry group for square.

$$
\begin{aligned}
& D_{4}=\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\} \\
& e \leftrightarrow(1) \\
& r \leftrightarrow(1234) \\
& r^{2} \leftrightarrow(13)(24) \\
& r^{3} \leftrightarrow(1432) \\
& f \leftrightarrow(12)(34) \\
& r f \leftrightarrow(24) \\
& r^{2} f \leftrightarrow(14)(23) \\
& r^{3} f \leftrightarrow(13)
\end{aligned}
$$

Dihedral Groups

Example: Find the symmetry group for rectangle.

$$
\begin{aligned}
K & =\{e, r, f, r f\} \\
e & \leftrightarrow(1) \\
r & \leftrightarrow(13)(24) \\
f & \leftrightarrow(12)(34) \\
r f & \leftrightarrow(14)(23)
\end{aligned}
$$

Thus $K \simeq V_{4}$. Note that this group is abelian.

Cayley's Theorem

Theorem

Every group is isomorphic to some group of permutations. That is any group can be seen as a permutation group.

Proof of synopsis:

- Define a function $\lambda_{x}: G g \longrightarrow x g$ for all $g \in G$. Since λ_{x} is $1-1$ and onto, it is a permutation.
- Define a function $\phi: G \longrightarrow S_{G}$ for all $x \in G$. Since ϕ is 1-1 $x \longrightarrow \lambda_{x}$ homomorphism, then $G \simeq \phi(G) \leq S_{G}$.

Cayley's Theorem

From Cayley's Theorem, let $V_{4}=\{e, a, b, a b\}$.
For $x \in V_{4}, \lambda_{x}: V_{4} \rightarrow V_{4}$ and $\phi: V_{4} \longrightarrow S_{4}$, we have

$$
\begin{aligned}
\lambda_{e} & =\left(\begin{array}{llll}
e & a & b & a b \\
e & a & b & a b
\end{array}\right) \leftrightarrow(1) \\
\lambda_{a} & =\left(\begin{array}{llll}
e & a & b & a b \\
a & e & a b & b
\end{array}\right) \leftrightarrow(12)(34) \\
\lambda_{b} & =\left(\begin{array}{cccc}
e & a & b & a b \\
b & a b & e & a
\end{array}\right) \leftrightarrow(13)(24) \\
\lambda_{a b} & =\left(\begin{array}{cccc}
e & a & b & a b \\
a b & b & a & e
\end{array}\right) \leftrightarrow(14)(23)
\end{aligned}
$$

Thus $V_{4} \simeq \phi\left(V_{4}\right) \leq S_{4}$.

Conjugacy Classes

Conjugacy classes help us to obtain a decomposition of the order of a finite group, called as class equation, which is very useful to determine the structure of a finite group.

Definition

Let G be a group and $a \in G$. An element $b \in G$ is said to be a conjugate of a in G denoted $a \approx b$, if there exists $x \in G$ such that $b=x a x^{-1}$. That is, for $a, b \in G$

$$
a \approx b \Leftrightarrow b=x a x^{-1}, \exists x \in G .
$$

- The conjugacy relation \approx is an equivalence relation.
- The equivalence class of a is called a conjugacy class of a in G, denoted by $C(a)$. So

$$
C(a):=\bar{a}=\{b \in G \mid b \approx a\}=\left\{x a x^{-1} \mid x \in G\right\},|C(a)|=: c_{a} .
$$

- If G is abelian, then

$$
C(a)=\left\{x a x^{-1} \mid x \in G\right\}=\left\{a x x^{-1} \mid x \in G\right\}=\{a\} .
$$

Conjugacy Classes

- $G=C\left(a_{1}\right) \cup C\left(a_{2}\right) \cup \cdots \cup C\left(a_{k}\right)$
$G \stackrel{\text { is finite }}{\Rightarrow}|G|=c_{a_{1}}+c_{a_{2}}+\cdots+c_{a_{k}}$.
- $c_{a}=\left[G: M_{G}(a)\right]$ where

$$
M_{G}(a)=\{x \in G \mid x a=a x\}=\left\{x \in G \mid x a x^{-1}=a\right\}
$$

is the centralizer of a in G.

- Class Equation: Let G be a finite group. Then

$$
|G|=|M(G)|+\sum_{a \notin M(G)}\left[G: M_{G}(a)\right]
$$

- $a \in M(G) \Leftrightarrow M_{G}(a)=G \Leftrightarrow\left[G: M_{G}(a)\right]=1$
- $|G|=p^{n} \Rightarrow|M(G)|>1$
- $|G|=p^{2} \Rightarrow G$ is abelian.

Conjugacy Classes

- Let $\pi=\left(i_{1} i_{2} \ldots i_{r}\right) \in S_{n}$ be a cycle. Then for all $\sigma \in S_{n}$,

$$
\sigma \pi \sigma^{-1}=\left(\sigma\left(i_{1}\right) \sigma\left(i_{2}\right) \ldots \sigma\left(i_{r}\right)\right) .
$$

This shows how to compute the conjugate.

- Two cycles in S_{n} are conjugate \Leftrightarrow they have the same length.
- The number of conjugacy classes in S_{n} is $p(n)$, number of partitions of n.
Example: Find the conjugacy classes of S_{3}.
Since $p(3)=3,2+1,1+1+1$ there exits 3 conjugacy classes.

cycle type	
$\left(i_{1} i_{2} i_{3}\right)$	$\overline{(123)}=\{(123),(132)\}$
$\left(i_{1} i_{2}\right)\left(i_{3}\right)$	$\overline{(12)}=\{(23),(13),(12)\}$
$\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)$	$\overline{(1)}=\{(1)\}=M\left(S_{3}\right)$

Thus

$$
\left|S_{3}\right|=1+2+3
$$

Conjugacy Classes

- Note that

$$
\begin{aligned}
\overline{(123)} & =\left\{\sigma(123) \sigma^{-1} \mid \sigma \in S_{3}\right\} \\
& =\left\{\sigma(1) \sigma(2) \sigma(3) \mid \sigma \in S_{3}\right\} \\
& =\{(123),(132)\} .
\end{aligned}
$$

- Let $H \leq G$. Then $H \unlhd G \Leftrightarrow H=\bigcup_{h \in H} \bar{h}$ where \bar{h} is conjugacy class of h.
From Lagrange's theorem $H \leq S_{3} \Rightarrow|H|| | S_{3} \mid$, then $|H|$ could be 1, 2, 3, 6 .
On the other hand, a normal subgroup must be a union of conjugacy classes of its elements, that is, $H=\bigcup_{h \in H} \bar{h}$ and H must contain the identity, $|H|=1+2=3$. So $A_{3}=\langle(123)\rangle$ is the only nontrivial normal subgroup of S_{3}. Observe that the class equation helps us to find such this normal subgroup.

