Lecture 11: Direct Products

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

External and Internal Direct Products

The direct product is used to investigate the structural properties of a group. The general idea of the external and internal direct products can be given as follows:
(1) If you have two groups, then you can combine these two groups to construct a new larger group which is called the external direct product.
(2) If you have a group and if you can factor it into the smaller groups such that these smaller groups are normal subgroups whose intersection is identity and their product gives the whole group, then the larger group is called the internal direct product of these smaller groups.

Actually these are two different perspectives of looking at the same thing.

External Direct Products

Definition

Let $\left(G_{1}, *_{1}\right)$ and $\left(G_{2}, *_{2}\right)$ be any two groups. The cartesian product

$$
G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\}
$$

is a group with the componentwise operation . defined by

$$
\left(g_{1}, g_{2}\right) \cdot\left(h_{1}, h_{2}\right)=\left(g_{1} *_{1} h_{1}, g_{2} *_{2} h_{2}\right) .
$$

The group $\left(G_{1} \times G_{2},.\right)$ is called the (external) direct product of groups G_{1} and G_{2}.

- The identity element is $\left(e_{G_{1}}, e_{G_{2}}\right)$
- The inverse of element $\left(g_{1}, g_{2}\right)$ is $\left(g_{1}^{-1}, g_{2}^{-1}\right)$

Direct Products

This definition can be generalized to more than two groups:

$$
G_{1} \times G_{2} \times \cdots \times G_{n}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid g_{i} \in G_{i}\right\}
$$

- $\left|G_{1} \times G_{2} \times \cdots \times G_{n}\right|=\left|G_{1}\right| \cdot\left|G_{2}\right| \ldots \ldots\left|G_{n}\right|$
- $\circ\left(\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)=\operatorname{lcm}\left(\circ\left(g_{1}\right), \circ\left(g_{2}\right), \ldots, \circ\left(g_{n}\right)\right)$
- If $G_{1}, G_{2}, \ldots, G_{n}$ are abelian, then $G_{1} \times G_{2} \times \cdots \times G_{n}$ is also abelian.
- If $G_{1}, G_{2}, \ldots, G_{n}$ are cyclic, then $G_{1} \times G_{2} \times \cdots \times G_{n}$ need not be cyclic.
Recall that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic $\Leftrightarrow \operatorname{gcd}(m, n)=1$.

Direct Products

Examples:

1. Let consider the groups $(\mathbb{Z},+)$ and $(G=\{ \pm 1, \pm i\}, \cdot)$. Then

$$
\mathbb{Z} \times G=\{(x, y) \mid x \in \mathbb{Z}, y \in G\}
$$

The identity of $\mathbb{Z} \times G$ is $(0,1)$ since $(x, y)(0,1)=(x+0, y .1)=(x, y)$.
The inverse of (x, y) is $\left(-x, y^{-1}\right)$ since $(x, y)\left(-x, y^{-1}\right)=(0,1)$.
2. Consider the groups $\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 5 \mathbb{Z}$, and $\mathbb{Z} / 6 \mathbb{Z}$. Then

$$
\begin{aligned}
& (\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z}) \\
= & \{(x, y, z) \mid x \in \mathbb{Z} / 3 \mathbb{Z}, y \in \mathbb{Z} / 5 \mathbb{Z}, z \in \mathbb{Z} / 6 \mathbb{Z}\}
\end{aligned}
$$

$|(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z})|=3.5 .6=90$
The identity of $(\mathbb{Z} / 3 \mathbb{Z}) \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z})$ is $(0,0,0)$

Internal Direct Products

Definition

Let G be a group and $H, K \unlhd G$. Then G is called the internal direct product of H and K, denoted by $G=H \otimes K$, if $\forall g \in G$ can be uniquely expressed as $g=h k, \exists h \in H, k \in K$.

Theorem

Let G be a group and $H, K \unlhd G$. Then

$$
G=H \otimes K \Leftrightarrow \begin{aligned}
& \text { (i) } H \cap K=\{e\} \\
& \text { (ii) } H K=G
\end{aligned}
$$

Theorem

Let G be a group and G be an internal direct product of H and K. Then

$$
G \simeq H \times K
$$

Direct Products

Remarks:

1. Let G be a group. If $\exists H, K \leq G$ such that

$$
\begin{aligned}
& \text { (i) } H \cap K=\{e\} \\
& \text { (ii) } H K=G \\
& \text { (iii) } h k=k h ; \forall h \in H, \forall k \in K
\end{aligned} \quad \Rightarrow G=H \otimes K .
$$

2. Let G be an abelian group. If $\exists H, K \leq G$ such that

$$
\begin{aligned}
& \text { (i) } H \cap K=\{e\} \\
& \text { (ii) } H+K=G \text {. }
\end{aligned}
$$

$$
\Rightarrow G=H \otimes K
$$

Direct Products

Example: Let

$$
\begin{aligned}
G & =\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\} \\
H & =\{\overline{0}, \overline{3}\} \unlhd \mathbb{Z}_{6} \\
K & =\{\overline{0}, \overline{2}, \overline{4}\} \unlhd \mathbb{Z}_{6} .
\end{aligned}
$$

Since $H \cap K=\{\overline{0}\}$ and $H+K=\mathbb{Z}_{6}$,

$$
\mathbb{Z}_{6}=H \otimes K
$$

Also since $H \simeq \mathbb{Z}_{2}$ and $K \simeq \mathbb{Z}_{3}$, then

$$
\mathbb{Z}_{6} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3}
$$

Direct Products

Example: Let

$$
\begin{aligned}
G & =\mathbb{Z}_{12} \\
H & =\langle\overline{2}\rangle \unlhd \mathbb{Z}_{12} \\
K & =\langle\overline{3}\rangle \unlhd \mathbb{Z}_{12} \\
H^{\prime} & =\langle\overline{4}\rangle \unlhd \mathbb{Z}_{12} .
\end{aligned}
$$

$$
\begin{aligned}
H+K & =\{h+k \mid h \in H, k \in K\} \\
& =\{\overline{2} x+\overline{3} y \mid x, y \in \mathbb{Z}\} \\
& =\{\overline{1} t \mid t \in \mathbb{Z}\}=\mathbb{Z}_{12},
\end{aligned}
$$

But $\mathbb{Z}_{12} \neq H \otimes K$, since $H \cap K=\{\overline{0}, \bar{\sigma}\} \neq\{\overline{0}\}$.

$$
\begin{aligned}
H+H^{\prime} & =H \neq \mathbb{Z}_{12} \\
K+H^{\prime} & =\mathbb{Z}_{12}
\end{aligned}
$$

