Name-Surname :
14.11.2019

Number :

1	2	3	4	5	Total

MTH311 ALGEBRA I MIDTERM EXAM

1. Let $G=\left\{\left.\left[\begin{array}{ll}0 & a \\ 0 & a\end{array}\right] \right\rvert\, a \in \mathbb{Z}\right\}$. Is G a group under matrix multiplication?Explain it.
2. Find the multiplicative inverse of the element $\overline{23} \in \mathbb{Z}_{26}$, if it exists.
3. Let $G=\langle a\rangle$ be a cyclic group of order 30 .
a) Find the generators of G.
b) Determine the subgroups of G.
c) Describe the elements of order 5 in G.
4. a) State the Lagrange's Theorem.
b) Let G be a noncyclic group of order 25 . Find the order of the subgroup $\langle a\rangle$, where $e \neq a \in G$. (Use the Lagrange's Theorem).
5. Indicate whether each of the following statements is True (T), or False (F).
a) Every group can be written as a union of its cyclic subgroups.....
b) There exists only one group of prime order (up to isomorphism).....
c) Every abelian group is cyclic.....
d) If all subgroups of a group G are cyclic, then the group is cyclic.....
e) Any two groups of three elements are isomorphic.
f) All generators of \mathbb{Z}_{20} are prime numbers.....
g) Every infinite cyclic group is isomorphic to $(\mathbb{Z},+) \ldots \ldots$
h) If the center $M(G)=G$, then G is abelian.....
1) Order of the product of finite order elements of a group is finite.....
j) I would like to have three bonus points, please.....

Good Luck!

Bibliography

[1] J. B. Fraleigh, A First Course In Abstract Algebra, Addison Wesley. (7th Edition).
[2] D. S. Malik, J. M. Mordeson and M. K. Sen, Fundamentals of Abstract Algebra, Mc Graw Hill, 1997.

