Lecture 1: Rings and Subrings

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

4 0 8

画

œ

Definition

Let R be a nonempty set and the two binary operations $+($ addition) and .(multiplication) defined on R. $(R, +, \cdot)$ is called a ring if the following conditions are satisfied:

- R_1) $(R, +)$ is an abelian group.
- $R₂$) Multiplication is associative.
- R_3) The left and right distributive laws holds; that is, for all a, b, $c \in R$

$$
a. (b + c) = (a.b) + (a.c)
$$

\n $(a+b).c = (a.c) + (b.c).$

For simplicity we denote

$$
R : = (R, +, .)
$$

\n
$$
ab : = a.b
$$

\n
$$
a - b : = a + (-b).
$$

Rings

Some remarks:

- The additive identity element (zero element) of the ring R is 0_R . The additive inverse of an element a is $-a$.
- \bullet A ring R is called a *commutative ring* if the multiplication is commutative.
- \bullet A ring R is called a *ring with unity(identity)* if it has a multiplicative identity. (The multiplicative identity element is denoted by 1_R). We should note that if a ring has a multiplicative identity element, it is unique.
- Let R be a ring with unity 1_R . An element $u \in R$ is called a unit (invertible element) if $\exists v \in R$ such that $uv = vu = 1$.(The multiplicative inverse of an element *a* (if exists) is denoted by $a^{-1})$
- Let the set of all units of R is $U(R) := \{ u \in R \mid u^{-1} \in R \}$. Then $(i) \varnothing \neq U(R)$ (ii) $0_R \notin U(R)$ (iii) $(U(R), .)$ is a group. イロト イ母 トイミト イミト ニヨー りんぴ

Examples:

- **1.** $(\mathbb{Z}, +, \cdot)$ is a commutative ring with unity 1.
- **2.** $(\mathbb{R}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ are commutative rings with unity.
- **3.** $(\mathbb{Z}_n, +_{n \cdot n})$ is a commutative ring with unity $\overline{1}$.
- 4. $(2\mathbb{Z}, +, \cdot)$ is a commutative ring without unity.

 ${\bf 5.} \ \ (M_2\left(\mathbb Z \right), \oplus, \odot)$ is a noncommutative ring with unity $\left[\begin{array}{cc} 1 & 0 \ 0 & 1 \end{array}\right]$ (The

operations \oplus , \odot are matrix addition and matrix product, respectively). **6.** $(M_2(2\mathbb{Z}), \oplus, \odot)$ is a noncommutative ring without unity.

7. The zero ring $(\{0_R\}, +, \cdot)$ is the only ring in which 0_R could act as additive identity and multiplicative identity.

8. $\mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}\}\$ is a ring with the usual operations on complex numbers. $(Z[i]$ is called the ring of Gaussian integers)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @

Definition

Let R and S be any two rings. $R \times S = \{(r,s) \mid r \in R, s \in S\}$ is a ring with the operations $+$ and . that are defined componentwise. The ring $(R \times S, +, \ldots)$ is called the **direct product** of rings R and S.

Example: $(\mathbb{Z} \times \mathbb{Z}, +, .)$ is a commutative ring with unity $(1, 1)$.

Definition

 $M(R) := \{ a \in R \mid ax = xa$, for all $x \in R \}$ is called the **center** of the ring R.

 $M(R) = R \Leftrightarrow R$ is a commutative ring.

Definition

Let R be a ring. An element $a \in R$ is called an **idempotent** element if $a^2 = a$. A ring R is called a **Boolean ring** if every element of R is idempotent.

Theorem

Every Boolean ring is commutative.

Examples:

1. **Z** is not a Boolean ring. The only idempotents are 0 and 1.

2. \mathbb{Z}_2 is a Boolean ring.

3. $\mathbb{Z} \times \mathbb{Z}$ is not a Boolean ring. The only idempotents are $(0, 0)$, $(0, 1)$, $(1, 0)$ and $(1, 1)$.

Definition

Let R be a ring. An element $a \in R$ is called a **nilpotent** element if $a^n = 0_R$ for some positive integer n.

If a nonzero element $a \in R$ is idempotent, then it is not a nilpotent.

4 D F

|メ唐 おえ居る

Elementary properties of rings

Let R be a ring. For $n \in \mathbb{Z}$, $a \in R$,

Theorem

Let R be a ring. For a, b, $c \in R$, we have 1) $a0_R = 0_R a = 0_R$, 2) $a(-b) = (-a) b = -(ab)$, 3) $(-a) (-b) = ab$, 4) $a(b - c) = ab - ac$.

Remark: Let $\{0_R\} \neq R$ be a ring with unity. Then the elements 0_R and 1_R are distinct. Hence, in a ring $\{0_R\} \neq R$ with unity, there exists at least two elements two elements. Ali Bülent Ekin, Elif Tan (Ankara University) [Rings and Subrings](#page-0-0) 7 / 9 (1998) Rings and Subrings 7 / 9 (1998)

Subrings

Definition

Let $(R, +, \cdot)$ be a ring and $\emptyset \neq S \subseteq R$. $(S, +, \cdot)$ is called a subring of R (denoted by $S \leq R$) if S is a ring with the operations of R.

Theorem

Let
$$
(R, +, .)
$$
 be a ring and $\emptyset \neq S \subseteq R$.
\n $S \leq R \Leftrightarrow (i) \forall a, b \in S, a - b \in S$
\n(ii) $\forall a, b \in S, ab \in S$

Examples:

1.
$$
\{0_R\} \leq R, R \leq R
$$

2. $2\mathbb{Z} \leq \mathbb{Z}$

3.
$$
M_2(2\mathbb{Z}) \leq M_2(\mathbb{Z})
$$

4.
$$
\mathbb{Z}[i] \leq \mathbb{C}
$$

$$
\textbf{5.} \ \{\overline{0},\overline{2},\overline{4}\} \leq \mathbb{Z}_6
$$

4 0 8

K 로 베 K 로 로 베

Remarks:

- If R is a commutative ring, then every subring of R is commutative.
- If R is ring with unity, a subring of R need not have unity (or need not have same unity). In Example 2, 2**Z** is a subring of **Z** without unity. In Example 5, the unity of subring $\{\overline{0},\overline{2},\overline{4}\}$ is $\overline{4}$, although the unity of \mathbb{Z}_6 is $\overline{1}$.