Lecture 1: Rings and Subrings

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

- ∢ ∃ ▶

Definition

Let R be a nonempty set and the two binary operations +(addition) and .(multiplication) defined on R. (R, +, .) is called a ring if the following conditions are satisfied:

- R_1) (R, +) is an abelian group.
- R_2) Multiplication is associative.
- (R_3) The left and right distributive laws holds; that is, for all $a, b, c \in R$

a.
$$(b + c) = (a.b) + (a.c)$$

 $(a + b).c = (a.c) + (b.c).$

For simplicity we denote

$$R := (R, +, .)$$

ab := a.b
a-b := a+(-b).

Rings

Some remarks:

- The additive identity element (zero element) of the ring R is 0_R . The additive inverse of an element a is -a.
- A ring *R* is called a *commutative ring* if the multiplication is commutative.
- A ring *R* is called a *ring with unity(identity)* if it has a multiplicative identity. (The multiplicative identity element is denoted by 1_{*R*}). We should note that if a ring has a multiplicative identity element, it is unique.
- Let R be a ring with unity 1_R. An element u ∈ R is called a unit (invertible element) if ∃v ∈ R such that uv = vu = 1.(The multiplicative inverse of an element a (if exists) is denoted by a⁻¹)
- Let the set of all units of R is $U(R) := \{u \in R \mid u^{-1} \in R\}$. Then (i) $\emptyset \neq U(R)$ (ii) $0_R \notin U(R)$ (iii) (U(R), .) is a group.

Examples:

1. $(\mathbb{Z}, +, .)$ is a commutative ring with unity 1.

- **2.** $(\mathbb{R}, +, .)$, $(\mathbb{Q}, +, .)$, $(\mathbb{C}, +, .)$ are commutative rings with unity.
- **3.** $(\mathbb{Z}_n, +_n, \cdot_n)$ is a commutative ring with unity $\overline{1}$.
- **4.** $(2\mathbb{Z}, +, .)$ is a commutative ring without unity.

5. $(M_2(\mathbb{Z}), \oplus, \odot)$ is a noncommutative ring with unity $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$. (The

operations \oplus , \odot are matrix addition and matrix product, respectively). **6.** $(M_2(2\mathbb{Z}), \oplus, \odot)$ is a noncommutative ring without unity.

7. The zero ring $({0_R}, +, .)$ is the only ring in which 0_R could act as additive identity and multiplicative identity.

8. $\mathbb{Z}[i] := \{a + ib \mid a, b \in \mathbb{Z}\}\$ is a ring with the usual operations on complex numbers. ($\mathbb{Z}[i]$ is called the ring of Gaussian integers)

(日) (四) (王) (王) (王)

Definition

Let R and S be any two rings. $R \times S = \{(r, s) \mid r \in R, s \in S\}$ is a ring with the operations + and \cdot that are defined componentwise. The ring $(R \times S, +, .)$ is called the **direct product** of rings R and S.

Example: $(\mathbb{Z} \times \mathbb{Z}, +, .)$ is a commutative ring with unity (1, 1).

Definition

 $M(R) := \{a \in R \mid ax = xa, \text{ for all } x \in R\}$ is called the **center** of the ring R.

 $M(R) = R \Leftrightarrow R$ is a commutative ring.

Definition

Let R be a ring. An element $a \in R$ is called an **idempotent** element if $a^2 = a$. A ring R is called a **Boolean ring** if every element of R is idempotent.

Theorem

Every Boolean ring is commutative.

Examples:

1. $\mathbb Z$ is not a Boolean ring. The only idempotents are 0 and 1.

2. \mathbb{Z}_2 is a Boolean ring.

3. $\mathbb{Z}\times\mathbb{Z}$ is not a Boolean ring. The only idempotents are

 $\left(0,0\right)$, $\left(0,1\right)$, $\left(1,0\right)$ and $\left(1,1\right).$

Definition

Let *R* be a ring. An element $a \in R$ is called a **nilpotent** element if $a^n = 0_R$ for some positive integer *n*.

If a nonzero element $a \in R$ is idempotent, then it is not a nilpotent.

★ E ► < E ►</p>

Elementary properties of rings

Let R be a ring. For $n \in \mathbb{Z}$, $a \in R$,

Theorem

Let R be a ring. For a, b, $c \in R$, we have 1) $a0_R = 0_R a = 0_R$, 2) a(-b) = (-a) b = -(ab), 3) (-a) (-b) = ab, 4) a (b - c) = ab - ac.

Remark: Let $\{0_R\} \neq R$ be a ring with unity. Then the elements 0_R and 1_R are distinct. Hence, in a ring $\{0_R\} \neq R$ with unity, there exists at least two elements.

Subrings

Definition

Let (R, +, .) be a ring and $\emptyset \neq S \subseteq R$. (S, +, .) is called a subring of R (denoted by $S \leq R$) if S is a ring with the operations of R.

Theorem

Let
$$(R, +, .)$$
 be a ring and $\emptyset \neq S \subseteq R$.
 $S \leq R \Leftrightarrow (i) \forall a, b \in S, a - b \in S$
 $(ii) \forall a, b \in S, ab \in S$

Examples:

1.
$$\{0_R\} \le R, R \le R$$

2. $2\mathbb{Z} \le \mathbb{Z}$

3.
$$M_2(2\mathbb{Z}) \leq M_2(\mathbb{Z})$$

4.
$$\mathbb{Z}[i] \leq \mathbb{C}$$

6.

5.
$$\{\overline{0}, \overline{2}, \overline{4}\} \le \mathbb{Z}_6$$

6 $M(R) < R$

- ∢ ∃ ▶

Remarks:

- If R is a commutative ring, then every subring of R is commutative.
- If R is ring with unity, a subring of R need not have unity (or need not have same unity).
 In Example 2, 2Z is a subring of Z without unity.
 In Example 5, the unity of subring {0, 2, 4} is 4, although the unity of Z₆ is 1.