Lecture 2: Integral Domains and Fields

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

3) 3

Definition

A ring with unity is called a **division ring** (skew-field) if every nonzero element of R is a unit. A commutative division ring R is called a **field**.

A ring R is a division ring \Leftrightarrow (R^* , .) is a group. A ring R is a field \Leftrightarrow (R^* , .) is a commutative group.

Examples:

Z is not a field. Since the only invertible elements are 1 and -1.
 R, Q, and C are fields.
 Z [i] is not a field.

4. $\mathbb{Q}[i]$ is a field.

Division rings and Fields

5. Let $\mathbb{H} = \{a_0 + a_1i + a_2j + a_3k \mid a_0, a_1, a_2, a_3 \in \mathbb{R}\}$ be a set of real quaternions. \mathbb{H} is a ring with the operations quaternion addition and quaternion multiplication that are defined as:

$$(a_0 + a_1i + a_2j + a_3k) + (b_0 + b_1i + b_2j + b_3k) = (a_0 + b_0) + (a_1 + b_1)i + (a_2 + b_2)j + (a_3 + b_3)k$$

$$(a_0 + a_1i + a_2j + a_3k) \times (b_0 + b_1i + b_2j + b_3k)$$

= $(a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3)$
+ $(a_1b_2 + a_2b_1 + a_3b_4 - a_4b_3)i$
+ $(a_1b_3 + a_3b_1 + a_4b_2 - a_2b_4)j$
+ $(a_1b_4 + a_4b_1 + a_2b_3 - a_3b_2)k.$

The ring $(\mathbb{H}, +, \times)$, which is called the quaternion ring, is a division ring. Note that $(\mathbb{H}, +, \times)$ is not a field, since $(\mathbb{H}, +, \times)$ is not commutative.

Zero Divisor

Definition

An element $0_R \neq a \in R$ is called a **zero divisor** if there exists $0_R \neq b \in R$ such that either $ab = 0_R$ or $ba = 0_R$. A ring R has no zero divisors if for all $a, b \in R, ab = 0_R$ implies $a = 0_R$ or $b = 0_R$.

We do not call the element 0_R a zero divisor. An element can not be a zero divisor and a unit simultaneously.

Examples:

1. $\mathbb Z$ is a ring without zero divisors.

 M₂ (Z) has zero divisors. For example, [1 0 0 0], [0 0 0 1] are zero divisors, since [1 0 0 0] ⊙ [0 0 0 1] = [0 0 0 0].
 .
 3. Z₆ has zero divisors. In particular, 7, 7, 4 are zero divisors in Z₆.
 4. The subring {0, 7, 4, 6} ≤ Z₈ has zero divisors.
 5. The subring {0, 7, 4} ≤ Z₆ has no zero divisors.
 6. All nonzero nilpotent elements are zero divisors.

Remark:

- Every nonzero element in a finite commutative ring with unity is either a unit or a zero divisor. Therefore, in \mathbb{Z}_n the zero divisors are precisely those nonzero elements that are not relatively prime to n.
- If R is a ring without zero divisors, then every subring of R has no zero divisor also. But if a ring R has zero divisors, then a subring of R may have zero divisors or not. In Example 5, Z₆ has zero divisors but its subring {0, 2, 4} has no zero divisors.

Definition

Let R be a commutative ring with unity. R is called an **integral domain** if R has no zero divisors.

Examples:

- **1.** \mathbb{Z} is an integral domain.
- **2.** $M_2(\mathbb{Z})$ is not an integral domain.
- **3.** \mathbb{Z}_n is an integral domain $\Leftrightarrow n$ is a prime.
- **4.** $\mathbb{Z}[i]$ is an integral domain.
- **5.** $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain, since it has zero divisors;
- (1,0)(0,1) = (0,0).

Theorem

The cancellation laws hold in a ring $R \Leftrightarrow R$ has no zero divisors.

Theorem

- Every field is an integral domain.
- 2 Every finite integral domain is a field.

Corollary

For prime p, \mathbb{Z}_p is a field.

All idempotent elements of an integral domain D are 0_D or 1_D .

Remark:

- There is an integral domain with n elements ⇔ n is a power of a prime number.
- Let D be a finite integral domain, with |D| = n. Then D is a finite field, and we must have n = p^k, with prime p and k ∈ Z⁺. Conversely, for any prime power p^k, there is an integral domain F_{p^k}.

Example: There is not any integral domain with 6 elements. There is an integral domain with 4 elements.

Definition

Let (F, +, .) be a field and $K \subseteq F$. (K, +, .) is called a subfield of F if K is a field with the operations of F.

Theorem

Let
$$(F, +, .)$$
 be a field and $K \subseteq F$.
K is a subfield of $F \Leftrightarrow (i) K^* \neq \emptyset$
 $(ii) \forall a, b \in K, a - b \in K$
 $(iii) \forall a, b \in K, ab \in K$
 $(iv) x \in K^* \Rightarrow x^{-1} \in K^*$

Examples:

- 1. \mathbb{Q} is a subfield of \mathbb{R} , \mathbb{R} is a subfield of \mathbb{C} .
- **2.** $\mathbb{Z}[i]$ is not a subfield of \mathbb{C} .
- **3.** $\mathbb{Q}[i]$ is a subfield of \mathbb{C} .