Lecture 2: Integral Domains and Fields

Prof. Dr. Ali Bülent EKİN
Doç. Dr. Elif TAN

Ankara University

Division rings and Fields

Definition

A ring with unity is called a division ring (skew-field) if every nonzero element of R is a unit. A commutative division ring R is called a field.

A ring R is a division ring $\Leftrightarrow\left(R^{*},.\right)$ is a group.
A ring R is a field $\Leftrightarrow\left(R^{*},.\right)$ is a commutative group.

Examples:

1. \mathbb{Z} is not a field. Since the only invertible elements are 1 and -1 .
2. \mathbb{R}, Q, and \mathbb{C} are fields.
3. $\mathbb{Z}[i]$ is not a field.
4. $\mathbb{Q}[i]$ is a field.

Division rings and Fields

5. Let $\mathbb{H}=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k \mid a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$ be a set of real quaternions. \mathbb{H} is a ring with the operations quaternion addition and quaternion multiplication that are defined as:

$$
\begin{aligned}
& \left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)+\left(b_{0}+b_{1} i+b_{2} j+b_{3} k\right) \\
= & \left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+b_{3}\right) k \\
& \left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right) \times\left(b_{0}+b_{1} i+b_{2} j+b_{3} k\right) \\
= & \left(a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}\right) \\
& +\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right) i \\
& +\left(a_{1} b_{3}+a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}\right) j \\
& +\left(a_{1} b_{4}+a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}\right) k .
\end{aligned}
$$

The ring $(\mathbb{H},+, \times)$, which is called the quaternion ring, is a division ring. Note that $(\mathbb{H},+, \times)$ is not a field, since $(\mathbb{H},+, \times)$ is not commutative.

Zero Divisor

Definition

An element $0_{R} \neq a \in R$ is called a zero divisor if there exists $0_{R} \neq b \in R$ such that either $a b=0_{R}$ or $b a=0_{R}$. A ring R has no zero divisors if for all $a, b \in R, a b=0_{R}$ implies $a=0_{R}$ or $b=0_{R}$.

We do not call the element 0_{R} a zero divisor. An element can not be a zero divisor and a unit simultaneously.

Examples:

1. \mathbb{Z} is a ring without zero divisors.
2. $M_{2}(\mathbb{Z})$ has zero divisors. For example, $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are zero divisors, since $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \odot\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
3. \mathbb{Z}_{6} has zero divisors. In particular, $\overline{2}, \overline{3}, \overline{4}$ are zero divisors in \mathbb{Z}_{6}.
4. The subring $\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\} \leq \mathbb{Z}_{8}$ has zero divisors.
5. The subring $\{\overline{0}, \overline{2}, \overline{4}\} \leq \mathbb{Z}_{6}$ has no zero divisors.
6. All nonzero nilpotent elements are zero divisors.

Zero Divisor

Remark:

- Every nonzero element in a finite commutative ring with unity is either a unit or a zero divisor. Therefore, in \mathbb{Z}_{n} the zero divisors are precisely those nonzero elements that are not relatively prime to n.
- If R is a ring without zero divisors, then every subring of R has no zero divisor also. But if a ring R has zero divisors, then a subring of R may have zero divisors or not. In Example 5, \mathbb{Z}_{6} has zero divisors but its subring $\{\overline{0}, \overline{2}, \overline{4}\}$ has no zero divisors.

Integral Domain

Definition

Let R be a commutative ring with unity. R is called an integral domain if R has no zero divisors.

Examples:

1. \mathbb{Z} is an integral domain.
2. $M_{2}(\mathbb{Z})$ is not an integral domain.
3. \mathbb{Z}_{n} is an integral domain $\Leftrightarrow n$ is a prime.
4. $\mathbb{Z}[i]$ is an integral domain.
5. $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain, since it has zero divisors;
$(1,0)(0,1)=(0,0)$.

Theorem

The cancellation laws hold in a ring $R \Leftrightarrow R$ has no zero divisors.

Integral Domain and Fields

Theorem

(1) Every field is an integral domain.
(2) Every finite integral domain is a field.

Corollary
 For prime p, \mathbb{Z}_{p} is a field.

All idempotent elements of an integral domain D are 0_{D} or 1_{D}.

Integral Domain and Fields

Remark:

- There is an integral domain with n elements $\Leftrightarrow n$ is a power of a prime number.
- Let D be a finite integral domain, with $|D|=n$. Then D is a finite field, and we must have $n=p^{k}$, with prime p and $k \in \mathbb{Z}^{+}$. Conversely, for any prime power p^{k}, there is an integral domain $F_{p^{k}}$.

Example: There is not any integral domain with 6 elements. There is an integral domain with 4 elements.

Subfields

Definition

Let $(F,+,$.$) be a field and K \subseteq F .(K,+,$.$) is called a subfield of F$ if K is a field with the operations of F.

Theorem

Let $(F,+,$.$) be a field and K \subseteq F$.
K is a subfield of $F \Leftrightarrow(i) K^{*} \neq \varnothing$

$$
\text { (ii) } \forall a, b \in K, a-b \in K
$$

$$
\text { (iii) } \forall a, b \in K, a b \in K
$$

$$
\text { (iv) } x \in K^{*} \Rightarrow x^{-1} \in K^{*}
$$

Examples:

1. Q is a subfield of \mathbb{R}, \mathbb{R} is a subfield of \mathbb{C}.
2. $\mathbb{Z}[i]$ is not a subfield of \mathbb{C}.
3. $\mathbb{Q}[i]$ is a subfield of \mathbb{C}.
