Lecture 3: Characteristic of a Ring

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

- ₹ 🖬 🕨

э

Definition

Let R be a ring. If there exists a positive integer n such that $na = 0_R$ for all $a \in R$, then the smallest such positive integer is called the **characteristic of** R, and denoted by **Char**(R). If no such positive integer exists, then R is said to be **characteristic zero**.

Examples:

- **1.** $Char(\mathbb{Z}) = 0$, $Char(\mathbb{Q}) = 0$, $Char(\mathbb{R}) = 0$, $Char(\mathbb{C}) = 0$
- **2.** Char $(\mathbb{Z}_n) = n$, since $\forall \overline{x} \in \mathbb{Z}_n$, $n\overline{x} = \overline{0}$.
- **3.** If *R* is a Boolean ring, then Char(R) = 2. Since $\forall x \in R, x + x = 2x = 0_R$.

Characteristic of a Ring

The following theorem is useful to find the characteristic of a ring when that ring has unity.

Theorem

Let R be a ring with unity. (i) If $n1_R \neq 0_R$ for all $n \in \mathbb{Z}^+$, then R has characteristic zero. (ii) If $n1_R = 0_R$ for some $n \in \mathbb{Z}^+$, then the smallest such integer n is the characteristic of R.

That is;

(*i*) if 1_R has infinite order under addition, then Char(R) = 0(*ii*) if 1_R has order *n* under addition, then Char(R) = n. **Example:**

1. $\operatorname{Char}(\mathbb{Z}) = 0$, since we could not find $n \in \mathbb{Z}^+$ such that n1 = 0. **2.** $\operatorname{Char}(\mathbb{Z}_m \times \mathbb{Z}_n) = \operatorname{lcm}(m, n)$. Since $\mathbb{Z}_m \times \mathbb{Z}_n$ is a ring with unity $(\overline{1}, \overline{1})$, it is enough to check the order of the unity to find the characteristic of $\mathbb{Z}_m \times \mathbb{Z}_n$. **3.** $\operatorname{Char}(\mathbb{Z} \times \mathbb{Z}_2) = 0$. **Example:** Let X be a set and P(X) be its power set. P(X) is a ring with the following operations + and . defined by:

$$A+B := (A \cup B) \setminus (A \cap B)$$
$$A.B := A \cap B$$

for $A, B \in P(X)$.

- (P(X), +, .) is a commutative ring with unity.
- The zero element of P(X) is \emptyset .
- The unity of P(X) is X.
- (P(X), +, .) is a Boolean ring, since every element of P(X) is idempotent. Hence, Char(P(X)) = 2.

イロト イ理ト イヨト イヨト

Theorem

The characteristic of an integral domain D is either zero or a prime.

Corollary

The characteristic of a field F is either zero or a prime.

Theorem

The characteristic of a finite ring R divides |R|.

Example: Let F be a field of order 2^n . From the result of the Lagrange Theorem, Char(F) = 2.

Remark: If Char(R) = 0, then the ring has infinitely many elements. But the converse is not true.

Example: Consider the ring $P(\mathbb{Z})$ which has infinitely many elements, but the Char $(P(\mathbb{Z})) = 2$.

イロン イ理と イヨン イヨン

For the compatibility of this chapter, now we give an important result related to the rings with unity. For details see: Chapter 5: Ring Homomorphisms and Isomorphisms Chapter 6: Field of Quotients of an Integral Domain.

Theorem

Let R be a ring with unity. If Char(R) = n, then R contains a subring isomorphic to \mathbb{Z}_n . If Char(R) = 0, then R contains a subring isomorphic to \mathbb{Z} .

From this theorem, we can consider that the rings \mathbb{Z}_n and \mathbb{Z} are the fundamental building blocks for all rings with unity.

Corollary

Let D be an integral domain. If Char(D) = p, then D contains a subring isomorphic to \mathbb{Z}_p . If Char(D) = 0, then D contains a subring isomorphic to \mathbb{Z} .

Theorem

Every field F contains a subfield isomorphic to either \mathbb{Z}_p or \mathbb{Q} .

Thus, the fields \mathbb{Z}_p and \mathbb{Q} are the fundamental building blocks for all fields. (These fields are prime fields).

Remark:

- The smallest subfield of a field *F* is called the **prime subfield**. In other words; the prime subfield of *F* is the smallest subfield containing 1_{*F*}.
- If F_q is a finite field of characteristic p, then $|F_q| = p^n$ for some positive integer n. Also every subfield of F_q has order p^k , where k is a positive divisor of n. Conversely, if k is a positive divisor of n, then there is exactly one subfield of F_q with p^k elements.
- Let K be a subfield of F. Then Char(K)=Char(F).