Lecture 4: Ideals and Factor Rings

Prof. Dr. Ali Bülent EKIN
Doç. Dr. Elif TAN

Ankara University

Ideals

Definition (Ideal)

Let R be a ring. $\varnothing \neq I \subseteq R$ is an ideal of R if the followings hold:
(i) $\forall a, b \in I, a-b \in I \quad$ (i.e. $(I,+)$ is a subgroup of $(R,+))$
(ii) $\forall a \in I, \forall r \in R, a r \in I, r a \in I$.

In particular, if ar $\in I(r a \in I)$, I is called a right (left) ideal of R. Remarks:

- If R is a commutative ring, then every left (right) ideal is also a right (left) ideal.
- Let R is a ring with unity and I be an ideal of R. If $1_{R} \in I$, then $I=R$.
- Every ideal I is also a subring of R, but the converse may not be true.

Ideals

Examples:

1. $\left\{0_{R}\right\}$ is an ideal of R. (zero ideal)
2. R is an ideal of R.

The ideals $\left\{0_{R}\right\}$ and R are called the trivial ideals. An ideal I of R is called a proper ideal if $I \neq R$.
3. Let $R=M_{2}(\mathbb{Z})$.
$\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ is a left ideal of R, but not a right ideal.
$\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ is a right ideal of R, but not a left ideal.
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is a subring of R, but not an ideal.
4. $n \mathbb{Z}=\{n x \mid x \in \mathbb{Z}\}$ is an ideal of \mathbb{Z}. Actually, every subring of \mathbb{Z} is an ideal.

Princible Ideal Domain (PID)

Let R be a ring and $a \in R$. Then

$$
\langle a\rangle=\left\{n a+r a+a s+\sum_{i=1}^{k} r_{i} a s_{i} \mid n \in \mathbb{Z}, r, s, r_{i}, s_{i} \in R, k \in \mathbb{N}\right\} .
$$

If R is a commutative ring with unity, then $\langle a\rangle=\{a r \mid r \in R\}=a R$. It can easily be shown that $\langle a\rangle$ is an ideal of R. The ideal $\langle a\rangle$ of R is called the principal ideal generated by a. In general, for $a_{1}, a_{2}, \ldots, a_{n} \in R$, the ideal

$$
\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\left\{a_{1} r_{1}, a_{2} r_{2}, \ldots, a_{n} r_{n} \mid a_{1}, a_{2}, \ldots, a_{n} \in R\right\}
$$

is called the ideal generated by $a_{1}, a_{2}, \ldots, a_{n}$.
Example: Consider the ring $2 \mathbb{Z}$ which is a commutative ring without unity. Then $\langle 2\rangle=\{n 2+2 r \mid n \in \mathbb{Z}, r \in R\}$.
Remark: Let R be a ring and $\varnothing \neq A \subseteq R$. The intersection of all ideals of R that contain A, denoted by $\langle A\rangle$, is called the ideal generated by A. If $A=\varnothing$, then $\langle A\rangle$ is the zero ideal.

Princible Ideal Domain (PID)

Definition

Let D be an integral domain. If every ideal of D is a principal ideal, then D is called the principal ideal domain (PID).

Theorem

\mathbb{Z} is a PID.
The principal ideal of \mathbb{Z} generated by $n \in \mathbb{Z}$ is $\langle n\rangle=\{n r \mid r \in \mathbb{Z}\}=n \mathbb{Z}$.

Theorem

Let R be a commutative ring with unity. Then

$$
R \text { has no nontrivial ideals } \Leftrightarrow R \text { is a field. }
$$

Corollary

1. The only ideals of a field F are $\left\{0_{F}\right\}$ and F.
2. An ideal is proper $\Leftrightarrow I t$ does not contain a unit.

Sum and Product of Ideals

Definition

Let I and J be two ideals of a ring R. The sum and product of the ideals I and J are defined as follows:

$$
\begin{aligned}
I+J & :=\{a+b \mid a \in I, b \in J\} \\
I . J & :=\left\{\sum_{k=1}^{n} a_{k} b_{k} \mid a_{k} \in I, b_{k} \in J, n \in \mathbb{N}\right\} .
\end{aligned}
$$

Theorem

Let I and J be ideals of a ring R. Then
(i) $I \cap J$ is an ideal of R.
(ii) $I+J$ is an ideal of R. Moreover, $I \subset I+J$ and $J \subset I+J$.
(iii) $I . J$ is an ideal of R. Moreover, $I . J \subset I \cap J$.
(iv) $I+J=\langle I \cup J\rangle$.

Note that $I \cup J$ need not be an ideal of R.

Sum and Product of Ideals

Now we give some properties of ideals of \mathbb{Z}.

Theorem

For positive integers n, m, we have

1. $\langle n\rangle \cap\langle m\rangle=\langle\operatorname{lcm}(n, m)\rangle$
2. $\langle n\rangle+\langle m\rangle=\langle\operatorname{gcd}(n, m)\rangle$
3. $\langle n\rangle .\langle m\rangle=\langle n m\rangle$
4. $\langle n\rangle \subseteq\langle m\rangle \Leftrightarrow m \mid n$.

Remark: Let R be an integral domain and $a, b \in R$. Then $\langle a\rangle \cdot\langle b\rangle=\langle a b\rangle$.

Examples:

1. $\langle 2\rangle \cap\langle 3\rangle=\langle 6\rangle=6 \mathbb{Z}$
2. $\langle 2\rangle+\langle 3\rangle=\{2 a+3 b \mid a, b \in \mathbb{Z}\}=\langle 1\rangle=\mathbb{Z}$
3. $\langle 2\rangle .\langle 3\rangle=\left\{2 a_{1} 3 b_{1}+2 a_{2} 3 b_{2}+\cdots+2 a_{k} 3 b_{k} \mid a_{i}, b_{i} \in \mathbb{Z}\right\}$

$$
=\left\{6 t_{1}+6 t_{2}+\cdots+6 t_{k} \mid t_{i}=a_{i} b_{i} \in \mathbb{Z}\right\}=6
$$

4. $\langle 4\rangle \subseteq\langle 2\rangle$.

Ideals

To determine all ideals of \mathbb{Z}_{n} we need to consider the subgroups $(I,+)<\left(\mathbb{Z}_{n},+\right)$. We know that each subgroup of \mathbb{Z}_{n} is cyclic, since $\mathbb{Z}_{n}=\langle\overline{1}\rangle$. Hence,

$$
I=\langle\bar{a}\rangle \text { is an ideal of } \mathbb{Z}_{n} \Leftrightarrow a \mid n .
$$

Example: All ideals of \mathbb{Z}_{12} are

$$
\begin{aligned}
\langle\overline{1}\rangle & =\mathbb{Z}_{12} \\
\langle\overline{2}\rangle & =\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\} \\
\langle\overline{3}\rangle & =\{\overline{0}, \overline{3}, \overline{6}, \overline{9}\} \\
\langle\overline{4}\rangle & =\{\overline{0}, \overline{4}, \overline{8}\} \\
\langle\overline{6}\rangle & =\{\overline{0}, \overline{6}\} \\
\langle\overline{12}\rangle & =\langle\overline{0}\rangle=\{\overline{0}\} .
\end{aligned}
$$

Factor Rings

Let R be a ring and I be an ideal of R. For $a, b \in R$, the relation \sim defined by " $a \sim b \Leftrightarrow a-b \in I$ " is an equivalence relation on R. The set of all equivalence classes is

$$
R / I:=\{a+I \mid a \in R\}
$$

Theorem

Let R be a ring and I be an ideal of R. Define two binary operations + and \cdot on R / I by

$$
\begin{aligned}
(a+l)+(b+l) & :=(a+b)+l \\
(a+l) \cdot(b+l) & :=(a b)+1
\end{aligned}
$$

for $a+I, b+I \in R / I$. Then $(R / I,+,$.$) is a ring.$

Factor Rings

Definition

The ring $(R / I,+,$.$) is called the factor(quotient) ring of R$ by I.

Remarks:

- If R is a ring with unity 1_{R}, then $1_{R}+I \in R / I$ is the unity of R / I.
- If R is a commutative ring, then R / I is also commutative.
- If R has no zero divisors, then R / I may have zero divisors. \mathbb{Z} has no zero divisors, but $\mathbb{Z} / 12 \mathbb{Z}$ has zero divisors;

$$
(3+12 \mathbb{Z})(4+12 \mathbb{Z})=0+12 \mathbb{Z}
$$

- \mathbb{Z}_{6} has zero divisors, but $\mathbb{Z}_{6} /\langle(\overline{0}, \overline{3})\rangle$ is a field.

Factor Rings

Examples:

1. If n is prime, then $\mathbb{Z} / n \mathbb{Z}$ is a field.
2. Let $R=\mathbb{Z}$ and $I=4 \mathbb{Z}$. Then

$$
\mathbb{Z} / 4 \mathbb{Z}=\{0+4 \mathbb{Z}, 1+4 \mathbb{Z}, 2+4 \mathbb{Z}, 3+4 \mathbb{Z}\}
$$

is the quotient ring of \mathbb{Z} by $4 \mathbb{Z}$.
3. Let $R=3 \mathbb{Z}$ and $I=3 \mathbb{Z} \cap 4 \mathbb{Z}=12 \mathbb{Z}$. Then

$$
3 \mathbb{Z} / 12 \mathbb{Z}=\{0+12 \mathbb{Z}, 3+12 \mathbb{Z}, 6+12 \mathbb{Z}, 9+12 \mathbb{Z}\}
$$

