Lecture 5: Ring Homomorphisms and Isomorphisms

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Ring Homomorphisms

Definition

Let (R, +, .) and (R', +', .') be two rings. A function $f : R \to R'$ is called a **homomorphism** from R into R' if (i) f(a+b) = f(a) + f(b)(ii) f(a.b) = f(a) .'f(b) for all $a, b \in R$.

- If f is one-to-one, then f is called a **monomorphism**.
- If f is onto, then f is called an **epimorphism**.(R' is called the **homomorphic image** of R).
- An isomorphism from the ring R onto R, is called an **automorphism**.
- Let $f : R \to R'$ be a ring homomorphism. Then Ker $f := \{r \in R \mid f(r) = 0_{R'}\} = f^{-1}(0_{R'})$ is called the **kernel** of f, $f(R) := \{f(r) \mid r \in R\}$ is called the **image** of f.

Properties of Ring Homomorphisms

Theorem

Let $f : R \to R'$ be a ring homomorphism. Then we have 1. $f(0_R) = 0_{R'}$. 2. f(-a) = -f(a) for all $a \in R$. 3. If S a subring of R, then f(S) is a subring of R'. 4. If S' is a subring of R', then $f^{-1}(S')$ is a subring of R. 5. If I is an ideal of R and f is **onto**, then f(I) is an ideal of R'. 6. If I' is an ideal of R', then $f^{-1}(I')$ is an ideal of R. 7. Ker f is an ideal of R. 8. Ker $f = \{0_R\} \Leftrightarrow f$ is one-to-one. 9. If R is commutative, then f(R) is commutative. 10. Let R has unity 1_R . Then f(R) has unity $f(1_R)$. 11. If R has unity 1_R and f is **onto.** Then R' has unity $f(1_R) = 1_{R'}$. 12. If R has unity 1_R and f is **onto.** If $a \in R$ is a unit, then f (a) is a unit R' and $f(a)^{-1} = f(a^{-1})$. 13. If $a \in R$ is an idempotent, then $f(a) \in R'$ is an idempotent.

Examples:

1. Let $f : R \to R'$, $f(a) = 0_{R'}$ for all $a \in R$. Then f is a (zero)homomorphism with Kerf = R.

2. Let f be an identity map. Then f is an isomorphism with $Kerf = \{0_R\}$.

3. $(\mathbb{Z}, +) \simeq (2\mathbb{Z}, +)$, but $(\mathbb{Z}, +, .) \ncong (2\mathbb{Z}, +, .)$. Since for the function $f : \mathbb{Z} \to 2\mathbb{Z}$ defined by f(a) = 2a, $f(ab) = 2ab \neq f(a) f(b) = 4ab$.

・ 日本 ・ 日本 ・ 日本 ・

Theorem (Natural Homomorphism)

Let R be a ring and I be an ideal of R. Then the function $\gamma : R \to R/I$ defined by $\gamma(r) = r + I$ is an epimorphism with $Ker\gamma = I$. The homomorphism γ is called the **natural homomorphism** of R onto R/I.

The function γ : Z → Z/ ⟨n⟩ defined by γ (a) = a + ⟨n⟩ for all a ∈ Z_n, is the natural homomorphism of Z onto Z/ ⟨n⟩.

The following theorem also known as **the fundamental homomorphism theorem**.

Theorem (First Isomorphism Theorem)

Let $f : R \to R'$ be a homomorphism with Kerf = I. Then the function $\mu : R/I \to f(R)$ defined by $\mu(r+I) = f(r)$ is an isomorphism; i.e. $R/Kerf \simeq f(R)$. Moreover, if $\gamma : R \to R/I$ is the natural homomorphism, then $f(r) = \mu\gamma(r)$, for each $r \in R$.

• Let $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(a) = \overline{a}$ for all $a \in \mathbb{Z}$. Then f is an epimorphism with $Kerf = n\mathbb{Z} = \langle n \rangle$. Then $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$. Moreover, let $\gamma: \mathbb{Z} \to \mathbb{Z}/\langle n \rangle$, $\gamma(a) = a + \langle n \rangle$ for all $a \in \mathbb{Z}$ is the natural homomorphism, then we have $f = \mu \circ \gamma$, where $\mu: \mathbb{Z}/\langle n \rangle \to \mathbb{Z}_n$ is the isomorphism such that $\mu(a + \langle n \rangle) = \overline{a}$.

Theorem (Second Isomorphism Theorem)

Let I and J be ideals of R. Then

$$I/(I \cap J) \simeq (I+J)/J$$

Example: Let $I = 6\mathbb{Z}$ and $J = 10\mathbb{Z}$ be ideals of \mathbb{Z} .

$$I + J = 2\mathbb{Z}$$

$$\Rightarrow (I + J) / J = \{0 + 10\mathbb{Z}, 2 + 10\mathbb{Z}, 4 + 10\mathbb{Z}, 6 + 10\mathbb{Z}, 8 + 10\mathbb{Z}\} \}$$

$$I \cap J = 30\mathbb{Z}$$

$$\Rightarrow I / (I \cap J) = \{0 + 30\mathbb{Z}, 6 + 30\mathbb{Z}, 12 + 30\mathbb{Z}, 18 + 30\mathbb{Z}, 24 + 30\mathbb{Z}\} \}$$

Theorem (Third Isomorphism Theorem)

Let I and J be ideals of R such that $I \subseteq J$. Then

 $(R/I)/(J/I) \simeq R/J.$

Example: $(\mathbb{Z}/12\mathbb{Z}) / (3\mathbb{Z}/12\mathbb{Z}) \simeq \mathbb{Z}/3\mathbb{Z}$.

Theorem (Correspondence Theorem)

Let $f : R \to R'$ be an epimorphism. Then there is a one-to-one correspondence between the ideals of R containing Kerf and the ideals of R'. That is, if I is an ideal of R containing Kerf, then f(I) is the corresponding ideal of R' and if I' is an ideal of R', then $f^{-1}(I') = \{x \in R \mid f(x) \in I'\}$ is the corresponding ideal of R.

• By Correspondence Theorem, there is a one-to-one correspondence between the ideals of *R* containing *I* and the ideals of the quotient ring *R*/*I*.

1. All ideals of \mathbb{Z}_{12} are $\langle \overline{0} \rangle$, $\langle \overline{1} \rangle$, $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$, $\langle \overline{4} \rangle$, $\langle \overline{6} \rangle$. Then

$$\begin{split} \mathbb{Z}_{12}/\left\langle \overline{0} \right\rangle &\simeq & \mathbb{Z}_{12}, \ \mathbb{Z}_{12}/\left\langle \overline{1} \right\rangle \simeq \left\{ \overline{0} \right\}, \ \mathbb{Z}_{12}/\left\langle \overline{2} \right\rangle \simeq \mathbb{Z}_{2}, \\ \mathbb{Z}_{12}/\left\langle \overline{3} \right\rangle &\simeq & \mathbb{Z}_{3}, \ \mathbb{Z}_{12}/\left\langle \overline{4} \right\rangle \simeq \mathbb{Z}_{4}, \ \mathbb{Z}_{12}/\left\langle \overline{6} \right\rangle \simeq \mathbb{Z}_{6}. \end{split}$$

2. $2\mathbb{Z}/8\mathbb{Z} \ncong \mathbb{Z}_4$. Since \mathbb{Z}_4 has unity, but $2\mathbb{Z}/8\mathbb{Z}$ not.

3. $\mathbb{Z}_2 \times \mathbb{Z}_2 \ncong \mathbb{Z}_4$, since their characteristics are different. (Isomorphic rings have the same characteristic).

4. $\mathbb{Z}_4 \times \mathbb{Z}_4 \ncong \mathbb{Z}_{16}$, since for $f : \mathbb{Z}_{16} \to \mathbb{Z}_4 \times \mathbb{Z}_4$, no element in $\mathbb{Z}_4 \times \mathbb{Z}_4$ has additive order 16. (Isomorphic rings preserve the additive order).