Lecture 6: The Field of Quotients of an Integral Domain

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Ali Bülent Ekin, Elif Tan (Ankara University)

The Field of Quotients

Definition

A ring R is said to be **embedded** in a ring S if there exists a monomorphism of R into S.

From this definition, any ring R can be embedded in a ring S if there exist a subring of S which is isomorphic to R, i.e., $R \simeq f(R) < S$.

Theorem

Any ring R can be embedded in a ring S with identity such that R is an ideal of S.

Motivated by the construction of \mathbb{Q} from \mathbb{Z} , here we show that any integral domain D can be embedded in a field F. In particular, every element of F can be written as a quotient of elements of D. The field F will be called as a **field of quotients (field of fractions)** of an integral domain D.

Theorem

Any integral domain D can be embedded in a field F.

Proof: The proof strategy can be given in the following 4 steps:

- **(**) Determine the elements of F by using elements of D.
- 2 Define the binary operations + and . on F.
- Solution Check the field axioms for (F, +, .)
- Show that *D* can be embedded in *F*.

The Field of Quotients of an Integral Domain

(1) Let D be an integral domain.

• Then

$$D imes D=\{(a,b)\mid a,b\in D\}$$
 .

Consider the subset

$$S=D imes D^*=\{(a,b)\mid a,b\in D,b
eq 0\}$$
 .

• For (a, b), $(c, d) \in S$,

$$(a, b) \sim (c, d) \Leftrightarrow ad = bc.$$

• The equivalence class $a/b := \overline{(a, b)} = \{(c, d) \mid (c, d) \sim (a, b)\}$.

$$F = \{a/b \mid (a, b) \in S\}.$$

(2) For
$$a/b, c/d \in F$$
,
 $a/b + c/d : = (ad + bc) / bd$
 $a/b.c/d : = ac/bd$

are well-defined.

∃ ► < ∃ ►</p>

The Field of Quotients of an Integral Domain

(3) Now we show that (F, +, .) is a field by the axioms of D. F_1 (F, +) is a commutative group.

- + is commutative and associative in F.
- $0/b \in F$ is the additive identity element.
- The inverse of $a/b \in F$ is $(-a)/b \in F$.

 F_2) (F^* , .) is a commutative group.

- . is commutative and associative in F.
- $b/b \in F$ is the multiplicative identity element.
- The inverse of $0/b \neq a/b \in F$ is $b/a \in F$. That is, $(a/b) \cdot (b/a) = ab/ba = b/b$.
- F_3). is distributive over + in F.

(4) Finally we show that D can be embedded in a field F. The function $f: D \to F$ given by $f(a) = a/1_D$ for $a \in D$ is one-to-one homomorphism. That is,

$$(i) f (a + b) = (a + b) / 1_D = a / 1_D + b / 1_D = f (a) + f (b)$$

$$(ii) f (ab) = (ab) / 1_D = (a / 1_D) (b / 1_D) = f (n) f (m),$$

and $f (a) = f (b) \Rightarrow a / 1_D = b / 1_D$, so $(a, 1_D) \sim (b, 1_D)$ implies
 $a 1_D = b 1_D$, thus $a = b$.
It is clear that $f (D)$ is a subring of F . Thus, $f : D \rightarrow f (D) < F$ is an
isomorphism; that is, $D \simeq f (D)$.

Ali Bülent Ekin, Elif Tan (Ankara University)

Remarks:

• The field (F, +, .) is called **the field of quotients of** D if there exists a subring D' of F such that $D \simeq D' < F$. Also every element of F can be expressed as a quotients of two elements of D, since

$$a/b = (a/1_D)(1_D/b) = (a/1_D)(b/1_D)^{-1}$$

 $(\mathbb{Q} \text{ is a field of quotients of } \mathbb{Z}.)$

- Every field containing an integral domain *D* contains a field of quotients of *D*.
- The field of quotients of D is the smallest field containing D. That is, no field K such that D ⊂ K ⊂ F.
 (Q is a field of quotients of Z, R is not a field of quotients of Z.)

- Any field of quotients of a field F is isomorphic to F.
 (IR is a field of quotients of IR.)
- Any two fields of quotients of *D* are isomorphic. Isomorphic integral domains have isomorphic field of quotients.

Example: Find the field of quotients of $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$. The field of quotients of $\mathbb{Z}[i]$ is

$$\{c+id \mid c, d \in \mathbb{Q}\}.$$

The Field of Quotients of an Integral Domain

Example: Find the field of quotients of \mathbb{Z}_5 .

 $S = \mathbb{Z}_5 imes \mathbb{Z}_5^* = \left\{ \left(\overline{0}, \overline{1}\right), \left(\overline{0}, \overline{2}\right), \left(\overline{0}, \overline{3}\right), \left(\overline{0}, \overline{4}\right), \left(\overline{1}, \overline{1}\right), \dots, \left(\overline{4}, \overline{4}\right) \right\}.$

$$\begin{split} \overline{\mathbf{0}}/\overline{\mathbf{1}} &= \left\{ \left(\overline{c}, \overline{d}\right) \mid \left(\overline{c}, \overline{d}\right) \sim \left(\overline{\mathbf{0}}, \overline{\mathbf{1}}\right) \right\} \\ &= \left\{ \left(\overline{c}, \overline{d}\right) \mid \overline{c}\overline{\mathbf{1}} = \overline{d}\overline{\mathbf{0}} \right\} \\ &= \left\{ \left(\overline{\mathbf{0}}, \overline{\mathbf{1}}\right), \left(\overline{\mathbf{0}}, \overline{\mathbf{2}}\right), \left(\overline{\mathbf{0}}, \overline{\mathbf{3}}\right), \left(\overline{\mathbf{0}}, \overline{\mathbf{4}}\right) \right\} \end{split}$$

$$\begin{split} \overline{1}/\overline{1} &= \left\{ \left(\overline{1},\overline{1}\right), \left(\overline{2},\overline{2}\right), \left(\overline{3},\overline{3}\right), \left(\overline{4},\overline{4}\right) \right\} \\ \overline{1}/\overline{2} &= \left\{ \left(\overline{1},\overline{2}\right), \left(\overline{2},\overline{4}\right), \left(\overline{3},\overline{1}\right), \left(\overline{4},\overline{3}\right) \right\} = \overline{3}/\overline{1} \\ \overline{1}/\overline{3} &= \left\{ \left(\overline{1},\overline{3}\right), \left(\overline{2},\overline{1}\right), \left(\overline{3},\overline{4}\right), \left(\overline{4},\overline{2}\right) \right\} = \overline{2}/\overline{1} \\ \overline{1}/\overline{4} &= \left\{ \left(\overline{1},\overline{4}\right), \left(\overline{2},\overline{3}\right), \left(\overline{3},\overline{2}\right), \left(\overline{4},\overline{1}\right) \right\} = \overline{4}/\overline{1} \end{split}$$

Hence $F = \{\overline{0}/\overline{1}, \overline{1}/\overline{1}, \overline{2}/\overline{1}, \overline{3}/\overline{1}, \overline{4}/\overline{1}\}$. It is obvious that $f: \mathbb{Z}_5 \longrightarrow F$ $\overline{a} \longrightarrow \overline{a}/\overline{1}$

is an isomorphism.

イロト イヨト イヨト イヨト