Lecture 7: Ordered Rings

Prof. Dr. Ali Bülent EKIN
Doç. Dr. Elif TAN

Ankara University

Ordered Rings

Motivated from the order relation $<$ on the real numbers \mathbb{R} defined by " $a<b \Leftrightarrow b-a$ is positive", now we define the order in a ring with unity by determining the positive elements.

Definition

Let $(R,+,$.$) be a ring with unity. An ordered ring is a ring R$ together with $\varnothing \neq P \subseteq R$ satisfying the following properties:
(i) Closure under $+: \forall a, b \in P, a+b \in P$
(ii) Closure under . : $\forall a, b \in P$, $a . b \in P$
(iii) Trichotomy: For each $a \in R$, exactly one of the followings holds:

$$
a \in P, a=0_{R},-a \in P
$$

The set P is called the set of positive elements of R.

Ordered Rings

Theorem

Let R be an ordered ring with the set of positive elements P. Let $<$ (less than) be the relation on R defined by " $a<b \Leftrightarrow(b-a) \in P$ " for $a, b \in R$. Then for all $a, b, c \in R$ the followings hold:
(1) Trichotomy: Exactly one of the following holds:

$$
a<b, a=b, b<a
$$

(2) Transitivity: If $a<b$ and $b<c \Rightarrow a<c$
(3) Isotoniticy: If $a<b \Rightarrow a+c<b+c$

$$
\text { If } a<b \text { and } 0_{R}<c \Rightarrow a c<b c \text { and } c a<c b .
$$

Remark: By considering this theorem, $>, \leq, \geq$ are defined as
$b>a$ means $a<b$
$a \leq b$ means either $a<b$ or $a=b$
$a>b$ means either $b<a$ or $b=a$.

Ordered Rings

Remark:

- Converse of this theorem also holds. That is, for a given relation $<$ on a nonzero ring R satisfying trichotomy, transitivity, and isotoniticy properties, the set

$$
P=\left\{x \in R \mid 0_{R}<x\right\}
$$

satisfies the conditions for a set of positive elements.

Properties of ordered rings

1. $\forall 0_{R} \neq a \in R, a^{2} \in P$.

For $0_{R} \neq a \in R$, either $a \in P$ or $-a \in P \stackrel{\text { closure }}{\Rightarrow} a^{2}=(-a)^{2} \in P$.
2. Char $(R)=0$. (Every ordered ring has infinite number of elements).
$1_{R}=1_{R}^{2} \in P$ and from the closure property,
$1_{R}=1_{R}+1_{R}+\cdots+1_{R} \in P$. Thus $n 1_{R} \neq 0_{R}$.
3. R has no zero divisors.

For $0_{R} \neq a \in R$, either $a \in P$ or $\left.-a \in P\right\}$
For $0_{R} \neq b \in R$, either $b \in P$ or $\left.-b \in P\right\}$
$\stackrel{\text { closure }}{\Rightarrow}$ either $a b \in P$ or $-a b \in P \stackrel{\text { trichotomy }}{\Rightarrow} a b \neq 0_{R}$.

Ordered integral domain

Definition

An ordered integral domain is an ordered ring that is also an integral domain.

Ordered Rings

Examples:

1. \mathbb{Z}, \mathbb{Q}, and \mathbb{R} are ordered rings.
2. The field \mathbb{C} can not be ordered. Since squared of elements of \mathbb{C} must be positive, 1 and $i \in \mathbb{C}$, but $1=1^{2} \in P$ and $i^{2}=-1 \notin P$.
3. \mathbb{Z}_{p} is not an ordered ring. Since characteristic of finite ring is nonzero, no finite ring can be ordered.

Ordered Rings

Definition

Let D be an ordered integral domain and $\varnothing \neq S \subseteq D$. If each nonzero subset of S has a smallest element, then S is called a well-ordered set.

Example: From the well-ordering princible, \mathbb{Z}^{+}is a well-ordered set. But \mathbb{Z}^{-}is not well-ordered, since there does not exist the smallest element.
Thus \mathbb{Z} is not well-ordered.

Theorem

Let D be an ordered integral domain and D^{+}(the set of positive elements) be a well-ordered set. Then $D \simeq \mathbb{Z}$.

Proof of synopsis: The smallest element of D^{+}is 1_{D} and $D^{+}=\left\{n 1_{D} \mid n \in \mathbb{Z}^{+}\right\}$. Then $D=\left\{n 1_{D} \mid n \in \mathbb{Z}\right\}$. Show that $f: \underset{n 1_{D}}{D} \rightarrow \mathbb{Z}$ is an isomorphism.

Exercises

Let D be an ordered integral domain. For $a, b, c, d \in D$, prove the followings.

1) $a>b$ and $c<0_{D} \Rightarrow a c<b c$
2) $a>b$ and $c>d \Rightarrow a+c<b+d$
3) $a<0_{D}$ and $0_{D}<b \Rightarrow a b<0_{D}$
4) $a>0_{D}$ and $a b>a c \Rightarrow b>c$
5) $a>b>0_{D} \Rightarrow a^{2}>b^{2}$
