Lecture 7: Ordered Rings

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

æ

→ ∢ ∃ →

Motivated from the order relation < on the real numbers \mathbb{R} defined by " $a < b \Leftrightarrow b - a$ is positive", now we define the **order** in a ring with unity by determining the **positive** elements.

Definition

Let (R, +, .) be a ring with unity. An **ordered ring** is a ring R together with $\emptyset \neq P \subseteq R$ satisfying the following properties: (*i*) **Closure under** + : $\forall a, b \in P, a + b \in P$ (*ii*) **Closure under** . : $\forall a, b \in P, a.b \in P$ (*iii*) **Closure under** . : $\forall a, b \in P, a.b \in P$

$$a \in P$$
, $a = 0_R$, $-a \in P$.

The set P is called the set of **positive** elements of R.

Ordered Rings

Theorem

Let R be an ordered ring with the set of positive elements P. Let < (less than) be the relation on R defined by "a < b \Leftrightarrow $(b - a) \in P$ " for $a, b \in R$. Then for all $a, b, c \in R$ the followings hold:

1 Trichotomy: Exactly one of the following holds:

a < b, a = b, b < a

2 Transitivity: If a < b and $b < c \Rightarrow a < c$ **Isotoniticy**: If $a < b \Rightarrow a + c < b + c$ 3 If a < b and $0_R < c \Rightarrow ac < bc$ and ca < cb.

Remark: By considering this theorem, $>, \leq, \geq$ are defined as

$$b > a$$
 means $a < b$

 $a \leq b$ means either a < b or a = b

b means either b < a or b = a.

Remark:

• Converse of this theorem also holds. That is, for a given relation < on a nonzero ring *R* satisfying trichotomy, transitivity, and isotoniticy properties, the set

$$P = \{x \in R \mid \mathsf{O}_R < x\}$$

satisfies the conditions for a set of positive elements.

3 1 4 3 1

1. $\forall 0_R \neq a \in R, a^2 \in P.$

For $0_R \neq a \in R$, either $a \in P$ or $-a \in P \stackrel{closure}{\Rightarrow} a^2 = (-a)^2 \in P$.

2. Char(R) = 0. (Every ordered ring has infinite number of elements).

 $1_R = 1_R^2 \in P$ and from the closure property, $1_R = 1_R + 1_R + \dots + 1_R \in P$. Thus $n1_R \neq 0_R$.

3. R has no zero divisors.

For $0_R \neq a \in R$, either $a \in P$ or $-a \in P$ For $0_R \neq b \in R$, either $b \in P$ or $-b \in P$

 $\stackrel{closure}{\Rightarrow} \text{either } ab \in P \text{ or } -ab \in P \stackrel{trichotomy}{\Rightarrow} ab \neq 0_R.$

Definition

An **ordered integral domain** is an ordered ring that is also an integral domain.

э

ヨト イヨト

Examples:

1. \mathbb{Z}, \mathbb{Q} , and \mathbb{R} are ordered rings.

2. The field \mathbb{C} can not be ordered. Since squared of elements of \mathbb{C} must be positive, 1 and $i \in \mathbb{C}$, but $1 = 1^2 \in P$ and $i^2 = -1 \notin P$.

3. \mathbb{Z}_p is not an ordered ring. Since characteristic of finite ring is nonzero, no finite ring can be ordered.

ヨト イヨト

Definition

Let *D* be an ordered integral domain and $\emptyset \neq S \subseteq D$. If each nonzero subset of *S* has a smallest element, then *S* is called a **well-ordered set**.

Example: From the well-ordering princible, \mathbb{Z}^+ is a well-ordered set. But \mathbb{Z}^- is not well-ordered, since there does not exist the smallest element. Thus \mathbb{Z} is not well-ordered.

Theorem

Let D be an ordered integral domain and D^+ (the set of positive elements) be a well-ordered set. Then $D \simeq \mathbb{Z}$.

Proof of synopsis: The smallest element of D^+ is 1_D and $D^+ = \{n1_D \mid n \in \mathbb{Z}^+\}$. Then $D = \{n1_D \mid n \in \mathbb{Z}\}$. Show that $f: \underset{n1_D}{D} \rightarrow \mathbb{Z}$ is an isomorphism.

Let D be an ordered integral domain. For a, b, c, $d \in D$, prove the followings.

1)
$$a > b$$
 and $c < 0_D \Rightarrow ac < bc$
2) $a > b$ and $c > d \Rightarrow a + c < b + d$
3) $a < 0_D$ and $0_D < b \Rightarrow ab < 0_D$
4) $a > 0_D$ and $ab > ac \Rightarrow b > c$
5) $a > b > 0_D \Rightarrow a^2 > b^2$

æ

<ロト < 団ト < 団ト < 団ト