Lecture 8: Prime and Maximal Ideals

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

.∋...>

One of the important aims of this chapter is to characterize the ideals by the factor rings of these ideals. To do this, first define the prime and maximal ideals.

Definition

Let R be a commutative ring and P be a proper ideal of R. P is a **prime** ideal of R if

$$ab \in P \Rightarrow a \in P$$
 or $b \in P$, for $a, b \in R$.

An alternative definition can be given as

$$P \stackrel{\text{prime}}{\leq} R \Leftrightarrow a \notin P \text{ and } b \notin P \Rightarrow ab \notin P.$$

Examples:

1. $\langle p \rangle = p\mathbb{Z}$ is a prime ideal of \mathbb{Z} .

2. 12Z is not a prime ideal of Z. Since $3.8 = 24 \in \langle 12 \rangle$ but $3 \notin \langle 12 \rangle$ and $8 \notin \langle 12 \rangle$.

3. $2\mathbb{Z} \times 3\mathbb{Z}$ is not a prime ideal of $\mathbb{Z} \times \mathbb{Z}$. Since $(2,1)(1,3) = (2,3) \in 2\mathbb{Z} \times 3\mathbb{Z}$ but $(2,1) \notin 2\mathbb{Z} \times 3\mathbb{Z}$ and $(1,3) \notin 2\mathbb{Z} \times 3\mathbb{Z}$.

Let R be a commutative ring with unity and P be a proper ideal of R. Then

P is a prime ideal of $R \Leftrightarrow R/P$ is an integral domain.

Example: Since $(\mathbb{Z} \times \mathbb{Z}) / (\mathbb{Z} \times \{0\}) \simeq \mathbb{Z}$, $\mathbb{Z} \times \{0\}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$.

Definition

Let R be a ring and M be a proper ideal of R. M is a **maximal ideal** of R if there is no proper ideal I of R properly containing M. That is, M is a **maximal ideal** of $R \Leftrightarrow$ if I is an ideal of R such that $M \subseteq I \subseteq R$, then either I = M or I = R.

Let R be a commutative ring with unity. Then every proper ideal of R is contained in a maximal ideal of R.

Corollary

• For a maximal ideal M of R, $a \in M \Leftrightarrow a \notin U(R)$.

R has at least one maximal ideal.

Let R be a commutative ring with unity and M be a proper ideal of R. Then

M is a maximal ideal of $R \Leftrightarrow R/M$ is a field.

Example: $4\mathbb{Z} = \langle 4 \rangle$ is a maximal ideal of $2\mathbb{Z}$, but not prime. Since $2.2 \in \langle 4 \rangle$ but $2 \notin \langle 4 \rangle$.

Let R be a commutative ring with unity.

M is a maximal ideal of $R \Rightarrow M$ is a prime ideal of R.

Example:

 $\mathbb{Z}/n\mathbb{Z}\simeq\mathbb{Z}_n$ is a field $\Leftrightarrow n$ is a prime,

Thus, the maximal ideals of \mathbb{Z} are $p\mathbb{Z}$, for prime p. Thus the ideals $p\mathbb{Z}$ are also prime.

Remark: The converse of this fact may not be true. For example, Since $\mathbb{Z}/\langle 0 \rangle \simeq \mathbb{Z}$ is an integral domain, the zero ideal $\langle 0 \rangle$ is a prime ideal of \mathbb{Z} , but not maximal.

Let R be a principle ideal domain (PID).

P is a prime ideal of $R \Leftrightarrow P$ is a maximal ideal of *R*.

Example: Find the maximal ideals of \mathbb{Z}_6 are $\{\overline{0}, \overline{2}, \overline{4}\}$ and $\{\overline{0}, \overline{3}\}$.

Since

$$f: \mathbb{Z} \xrightarrow[n \longrightarrow]{} \mathbb{Z}_{6}$$

is an epimorphism with $Kerf = 6\mathbb{Z}$, the ideals of \mathbb{Z}_6 are f(I) such that $6\mathbb{Z} \subseteq I$.

The only ideals of \mathbb{Z} contains $6\mathbb{Z}$ are $\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}$, and $6\mathbb{Z}$. Then $f(\mathbb{Z}) = \mathbb{Z}_6, f(2\mathbb{Z}) = \{\overline{0}, \overline{2}, \overline{4}\}, f(3\mathbb{Z}) = \{\overline{0}, \overline{3}\}$, and $f(6\mathbb{Z}) = \{\overline{0}\}$.

イロト イ団ト イヨト イヨト