Lecture 9: Rings of Polynomials

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

э

- ∢ ∃ ▶

Definition

Let R be a ring and R[x] be the set of all infinite formal sums

$$f(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

where $a_i \in R$ and $a_i = 0_R$ for all but a finite number of values of *i*. An element of R[x] is called a **polynomial** over *R*.

The symbol x is called an **indeterminate** over R, and the a_i are called **coefficients** of f(x).

The degree of f (x), denoted by degf (x), is defined as the largest i such that a_i ≠ 0_R, and the coefficient a_i is called the leading coefficient.

If R has unity and the leading coefficient $a_i = 1_R$, then f(x) is called a **monic polynomial**.

- If all a_i = 0_R in f (x), then f (x) is called zero polynomial, and the degree of zero polynomial is undefined.
- An element of *R* is called a **constant** polynomial, and the degree of a constant polynomial is 0.

イロト イ団ト イヨト イヨト 三日

Rings of Polynomials

Let

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

and

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots$$

be two polynomials over *R*. The **addition** and **multiplication** of polynomials f(x) and g(x) are defined by

$$f(x) + g(x) := (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n + \dots$$
$$f(x) \cdot g(x) := c_0 + c_1x + \dots + c_nx^n + \dots, \text{ where } c_n = \sum_{i=0}^n a_i b_{n-i}$$

• Two polynomials are defined to be **equal** if and only if $a_i = b_i$ for i = 0, 1, 2, ...

For the simplicity, if $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$ has $a_k = 0_R$ for k > n, we denote $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$. We omit any term 0_Rx^i and write a term 1_Rx^k as x^k .

Rings of Polynomials

Remark: A polynomial over R can also be defined as an infinite sequence $(a_0, a_1, a_2, ...)$ where $a_i \in R$ and $a_k = 0_R$ for all k such that k > n. The function $R \longrightarrow R[x]$ is a monomorphism. Then R is

embedded in R[x]. Now let denote

$$ax^0$$
 : = (a, 0_R, 0_R, ...)
 ax : = (0_R, a, 0_R, ...)
 ax^2 : = (0_R, 0_R, a, ...)

:

So

$$a_0 + a_1x + a_2x^2 + \cdots + a_nx^n := (a_0, a_1, a_2, \dots, a_n, \dots)$$

If R has unity 1_R , then we can consider x as an element of R[x] by $1_R x$ as x. That is, $x := (0_R, 1_R, 0_R, ...)$. Thus

$$ax = (a, 0_R, 0_R, \ldots) (0_R, 1_R, 0_R, \ldots) = (0_R, a, 0_R, \ldots).$$

Theorem

The set R[x] is a ring with polynomial addition and multiplication. The ring (R[x], +, .) is called **ring of polynomials** over R.

- If R is commutative, then so is R[x].
- **2** If R has unity, then so is R[x].
- If D is an integral domain, then so is D[x].
- If F is a field, then F[x] is an integral domain.

Remark: If F is a field, then F[x] is not a field. Since the only invertible elements of F[x] are nonzero constant polynomials.

Rings of Polynomials

Theorem

Let f(x) and g(x) be nonzero polynomials in R[x]. Then

$$\begin{split} & \deg\left(f\left(x\right)g\left(x\right)\right) & \leq & \deg f\left(x\right) + \deg g\left(x\right) \\ & \deg\left(f\left(x\right) + g\left(x\right)\right) & \leq & \max\left\{\deg f\left(x\right), \deg g\left(x\right)\right\}. \end{split}$$

In particular, if R is an integral domain, then

$$\deg\left(f\left(x\right)g\left(x\right)\right) = \deg f\left(x\right) + \deg g\left(x\right).$$

Example: Let $f(x) = 2x^2 - 2x + 3$, $g(x) = 3x + 1 \in \mathbb{Z}_6[x]$. Then

$$\begin{array}{rcl} f\left(x\right)g\left(x\right) &=& 2x^2+x+3\\ &\Rightarrow& \deg\left(f\left(x\right)g\left(x\right)\right)=2<\deg f\left(x\right)+\deg g\left(x\right)=3. \end{array}$$

æ

イロト イポト イヨト イヨト

Remark:

•
$$\mathbb{Z}_n[x]$$
 is infinite ring with characteristic n .
In $\mathbb{Z}_2[x]$, $(x+1)^2 = (x+1)(x+1) = x^2 + 1$
and

$$(x+1) + (x+1) = 0x + 0 = 0.$$

3

イロト イヨト イヨト イヨト

• The ring (R[x])[y] can be seen as the ring of polynomials in y with coefficients that are polynomials in x. Thus we consider this ring

$$R[x_1, x_2, \ldots, x_n]$$

as a ring of polynomials in the *n* indeterminates x_i with coefficiens in *R*.