Lecture 9: Rings of Polynomials

Prof. Dr. Ali Bülent EKIN
Doç. Dr. Elif TAN

Ankara University

Rings of Polynomials

Definition

Let R be a ring and $R[x]$ be the set of all infinite formal sums

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

where $a_{i} \in R$ and $a_{i}=0_{R}$ for all but a finite number of values of i. An element of $R[x]$ is called a polynomial over R.

The symbol x is called an indeterminate over R, and the a_{i} are called coefficients of $f(x)$.

Rings of Polynomials

- The degree of $f(x)$, denoted by $\operatorname{deg} f(x)$, is defined as the largest i such that $a_{i} \neq 0_{R}$, and the coefficient a_{i} is called the leading coefficient.
If R has unity and the leading coefficient $a_{i}=1_{R}$, then $f(x)$ is called a monic polynomial.
- If all $a_{i}=0_{R}$ in $f(x)$, then $f(x)$ is called zero polynomial, and the degree of zero polynomial is undefined.
- An element of R is called a constant polynomial, and the degree of a constant polynomial is 0 .

Rings of Polynomials

- Let

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}+\cdots
$$

be two polynomials over R. The addition and multiplication of polynomials $f(x)$ and $g(x)$ are defined by

$$
\begin{aligned}
& f(x)+g(x):=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}+\cdots \\
& f(x) \cdot g(x):=c_{0}+c_{1} x+\cdots+c_{n} x^{n}+\cdots, \text { where } c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}
\end{aligned}
$$

- Two polynomials are defined to be equal if and only if $a_{i}=b_{i}$ for $i=0,1,2, \ldots$.
For the simplicity, if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$ has $a_{k}=0_{R}$ for $k>n$, we denote $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$. We omit any term $0_{R} x^{i}$ and write a term $1_{R} x^{k}$ as x^{k}.

Rings of Polynomials

Remark: A polynomial over R can also be defined as an infinite sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ where $a_{i} \in R$ and $a_{k}=0_{R}$ for all k such that $k>n$.
The function $\quad R \longrightarrow R[x] \quad$ is a monomorphism. Then R is

$$
a \quad \longrightarrow\left(a, 0_{R}, 0_{R}, \ldots\right)
$$

embedded in $R[x]$. Now let denote

$$
\begin{aligned}
a x^{0} & :=\left(a, 0_{R}, 0_{R}, \ldots\right) \\
a x & :=\left(0_{R}, a, 0_{R}, \ldots\right) \\
a x^{2} & :=\left(0_{R}, 0_{R}, a, \ldots\right)
\end{aligned}
$$

So

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}:=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right) .
$$

If R has unity 1_{R}, then we can consider x as an element of $R[x]$ by $1_{R} x$ as x. That is, $x:=\left(0_{R}, 1_{R}, 0_{R}, \ldots\right)$. Thus

$$
a x=\left(a, 0_{R}, 0_{R}, \ldots\right)\left(0_{R}, 1_{R}, 0_{R}, \ldots\right)=\left(0_{R}, a, 0_{R}, \ldots\right) .
$$

Rings of Polynomials

Theorem

The set $R[x]$ is a ring with polynomial addition and multiplication. The ring $(R[x],+,$.$) is called ring of polynomials over R$.
(1) If R is commutative, then so is $R[x]$.
(2) If R has unity, then so is $R[x]$.
(3) If D is an integral domain, then so is $D[x]$.
(9) If F is a field, then $F[x]$ is an integral domain.

Remark: If F is a field, then $F[x]$ is not a field. Since the only invertible elements of $F[x]$ are nonzero constant polynomials.

Rings of Polynomials

Theorem

Let $f(x)$ and $g(x)$ be nonzero polynomials in $R[x]$. Then

$$
\begin{aligned}
\operatorname{deg}(f(x) g(x)) & \leq \operatorname{deg} f(x)+\operatorname{deg} g(x) \\
\operatorname{deg}(f(x)+g(x)) & \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}
\end{aligned}
$$

In particular, if R is an integral domain, then

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)
$$

Example: Let $f(x)=2 x^{2}-2 x+3, g(x)=3 x+1 \in \mathbb{Z}_{6}[x]$. Then

$$
\begin{aligned}
f(x) g(x) & =2 x^{2}+x+3 \\
& \Rightarrow \operatorname{deg}(f(x) g(x))=2<\operatorname{deg} f(x)+\operatorname{deg} g(x)=3
\end{aligned}
$$

Rings of Polynomials

Remark:

- $\mathbb{Z}_{n}[x]$ is infinite ring with characteristic n. $\ln \mathbb{Z}_{2}[x]$,

$$
(x+1)^{2}=(x+1)(x+1)=x^{2}+1
$$

and

$$
(x+1)+(x+1)=0 x+0=0 .
$$

Ring of polynomials with n indeterminates

- The ring $(R[x])[y]$ can be seen as the ring of polynomials in y with coefficients that are polynomials in x.
Thus we consider this ring

$$
R\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

as a ring of polynomials in the n indeterminates x_{i} with coefficiens in R.

