Lecture 10: Factorization of Polynomials over a Field

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Theorem

Let F be a subfield of a field E, let $\alpha \in E$ and f $(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$. The function

is a homomorphism. The homomorphism ϕ_{α} is called the **evaluation** homomorphism for fields.

From definition of ϕ_{α} , we have

$$\begin{array}{lll} \phi_{\alpha}\left(x\right) & = & \phi_{\alpha}\left(1_{F}x\right) = 1_{F}\alpha = \alpha,\\ \phi_{\alpha}\left(a\right) & = & \textit{a, for all } a \in F. \end{array}$$

For the simplicity, we consider $1_F =: 1$ and $0_F =: 0$.

Examples:

- 1. Let $\phi_0 : \mathbb{Q}[x] \longrightarrow \mathbb{R}$, then $\phi_0(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_10 + \dots + a_n0 = a_0.$
- **2.** Let $\phi_i : \mathbb{Q}[x] \longrightarrow \mathbb{C}$, then

$$\phi_i(x^2+1) = i^2+1 = 0.$$

Thus $x^2 + 1 \in Ker\phi_i$.

3

Definition

Let F be a subfield of a field E and $\phi_{\alpha}: F[x] \longrightarrow E$ be the evaluation homomorphism. For $f(x) = a_0 + a_1x + \cdots + a_nx^n \in F[x]$, if

$$f(\alpha) = 0,$$

then α is a **zero** of f(x).

Remark: Our aim is to find the zeros of polynomials. It is same that to find all $\alpha \in E$ such that $\phi_{\alpha}(f(x)) = 0$ and find all zeros of f(x).

The Division Algorithm

Theorem (The Division Algoritm)

Let

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

and

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$

be two polynomials in F[x] with $a_n \neq 0$, $b_m \neq 0$ and m > 0. Then $\exists ! q(x), r(x) \in F[x]$ such that

$$f(x) = g(x) q(x) + r(x)$$
,

where either r(x) = 0 or deg $r(x) < \deg g(x)$.

Note that If n = m = 0, then $q(x) = f(x)g(x)^{-1}$ and r(x) = 0.

Remark: The Division Algorithm also holds for a commutative ring with unity when the leading coefficient of g(x) is a unit.

Definition

Let f(x) and g(x) be two nonzero polynomials in F[x]. A polynomial $d(x) \in F[x]$ is called the greatest common divisor of f(x) and g(x), denoted $d(x) = \gcd(f(x), g(x))$, if

- d(x) is monic poynomial,
- 2 $d(x) \mid f(x)$ and $d(x) \mid g(x)$,
- If $k(x) \mid f(x)$ and $k(x) \mid g(x)$, then $k(x) \mid d(x)$.

Moreover, there exists polynomials s(x), t(x) such that d(x) = f(x) s(x) + g(x) t(x).

Definition

Let f(x), $g(x) \in F[x]$ with $g(x) \neq 0$. If $\exists q(x) \in F[x]$ such that f(x) = g(x) q(x), then we say that g(x) divides f(x) in F[x] or g(x) is a factor of f(x).

Theorem (Remainder Theorem)

For $a \in F$, $\exists q(x) \in F[x]$ such that

$$f(x) = (x - a) q(x) + f(a).$$

From the remainder theorem, we have the following theorem.

Theorem (Factor Theorem)

 $a \in F$ is a zero of $f(x) \in F[x] \Leftrightarrow x - a$ is a factor of f(x) in F[x].

ヨト イヨト

Let $f(x) \in F[x]$ be anonzero polynomial with degree *n*. From the factor theorem, we have

$$f\left(x
ight)=\left(x-a_{1}
ight)\left(x-a_{2}
ight)\cdots\left(x-a_{k}
ight)q_{k}\left(x
ight)$$
 ,

where $q_k(x)$ has no zero. Since deg f(x) = n, we have $k \leq n$.

Corollary

A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

Theorem

Let G be a finite group and let $(F^*, .)$ be a multiplicative group of a field F. $(G, .) < (F^*, .) \Rightarrow G$ is cyclic.