Lecture 10: Factorization of Polynomials over a Field

Prof. Dr. Ali Bülent EKİN
Doç. Dr. Elif TAN

Ankara University

The Evaluation Homomorphism

Theorem

Let F be a subfield of a field E, let $\alpha \in E$ and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$. The function

$$
\begin{aligned}
\phi_{\alpha}: & F[x] \\
f(x) & \longrightarrow E \\
& \longrightarrow f(\alpha)
\end{aligned}
$$

is a homomorphism. The homomorphism ϕ_{α} is called the evaluation homomorphism for fields.

From definition of ϕ_{α}, we have

$$
\begin{aligned}
\phi_{\alpha}(x) & =\phi_{\alpha}\left(1_{F} x\right)=1_{F} \alpha=\alpha, \\
\phi_{\alpha}(a) & =a, \text { for all } a \in F
\end{aligned}
$$

For the simplicity, we consider $1_{F}=: 1$ and $0_{F}=: 0$.

The Evaluation Homomorphism

Examples:

1. Let $\phi_{0}: \mathbb{Q}[x] \longrightarrow \mathbb{R}$, then

$$
\phi_{0}\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{0}+a_{1} 0+\cdots+a_{n} 0=a_{0} .
$$

2. Let $\phi_{i}: \mathbb{Q}[x] \longrightarrow \mathbb{C}$, then

$$
\phi_{i}\left(x^{2}+1\right)=i^{2}+1=0 .
$$

Thus $x^{2}+1 \in \operatorname{Ker} \phi_{i}$.

Zero of a polynomial

Definition

Let F be a subfield of a field E and $\phi_{\alpha}: F[x] \longrightarrow E$ be the evaluation homomorphism. For $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$, if

$$
f(\alpha)=0,
$$

then α is a zero of $f(x)$.

Remark: Our aim is to find the zeros of polynomials. It is same that to find all $\alpha \in E$ such that $\phi_{\alpha}(f(x))=0$ and find all zeros of $f(x)$.

The Division Algorithm

Theorem (The Division Algoritm)

Let

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

and

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}
$$

be two polynomials in $F[x]$ with $a_{n} \neq 0, b_{m} \neq 0$ and $m>0$. Then $\exists!q(x), r(x) \in F[x]$ such that

$$
f(x)=g(x) q(x)+r(x),
$$

where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
Note that If $n=m=0$, then $q(x)=f(x) g(x)^{-1}$ and $r(x)=0$.
Remark: The Division Algorithm also holds for a commutative ring with unity when the leading coefficient of $g(x)$ is a unit.

Greatest common divisor in $\mathrm{F}[\mathrm{x}]$

Definition

Let $f(x)$ and $g(x)$ be two nonzero polynomials in $F[x]$. A polynomial $d(x) \in F[x]$ is called the greatest common divisor of $f(x)$ and $g(x)$, denoted $d(x)=\operatorname{gcd}(f(x), g(x))$, if
(1) $d(x)$ is monic poynomial,
(2) $d(x) \mid f(x)$ and $d(x) \mid g(x)$,
(3) If $k(x) \mid f(x)$ and $k(x) \mid g(x)$, then $k(x) \mid d(x)$.

Moreover, there exists polynomials $s(x), t(x)$ such that $d(x)=f(x) s(x)+g(x) t(x)$.

Factor Theorem

Definition

Let $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. If $\exists q(x) \in F[x]$ such that $f(x)=g(x) q(x)$, then we say that $g(x)$ divides $f(x)$ in $F[x]$ or $g(x)$ is a factor of $f(x)$.

Theorem (Remainder Theorem)

For $a \in F, \exists q(x) \in F[x]$ such that

$$
f(x)=(x-a) q(x)+f(a) .
$$

Factor Theorem

From the remainder theorem, we have the following theorem.

Theorem (Factor Theorem)

$$
a \in F \text { is a zero of } f(x) \in F[x] \Leftrightarrow x-a \text { is a factor of } f(x) \text { in } F[x] .
$$

Factor Theorem

Let $f(x) \in F[x]$ be anonzero polynomial with degree n. From the factor theorem, we have

$$
f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right) q_{k}(x)
$$

where $q_{k}(x)$ has no zero. Since $\operatorname{deg} f(x)=n$, we have $k \leq n$.

Corollary

A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

A relation between cyclic groups and finite fields

Theorem

Let G be a finite group and let $\left(F^{*},.\right)$ be a multiplicative group of a field F.

$$
(G, .)<\left(F^{*}, .\right) \Rightarrow G \text { is cyclic. }
$$

