Lecture 11: Unique Factorization Domains

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

It is well known that the fundamental theorem of arithmetic holds in \mathbb{Z} . Motiveted the unique factorization into primes (irreducibles) in \mathbb{Z} , we investigate the integral domains which have this property.

Definition

Let R be a commutative ring with unity and let $a, b \in R$.

- a divides b (a is a factor of b), denoted by a | b, if ∃ c ∈ R such that b = ac.
- $0_{R} \neq a$ is a **unit** of *R*, if $u \mid 1_{R}$, that is, $u \in U(R)$.

• *a* and *b* are **associates** in *R*, denoted by $a \approx b$, if a = bu where $u \in U(R)$.

Examples:

1. The only units of $\mathbb Z$ are 1 and -1. Thus the only associates of 17 in $\mathbb Z$ are 17 and -17.

2. The only units of $\mathbb{Z}[i]$ are 1, -1, i, -i. Thus the only associates of 1 + i are 1 + i, -1 + i, 1 - i and -1 - i.

3. All units of F[x] are F^* . The associates of a nonconstant f(x) is uf(x) where u is a unit in F.

Remarks:

● Let R be a commutative ring with unity and a, b ∈ R. The relation ≈ defined by

$$a \approx b \Leftrightarrow a = bu, \ u \in U(R)$$
,

is an equivalence relation.

② Let D be an integral domain and a, b ∈ D. Then we have the followings:

•
$$a \approx b \Leftrightarrow a \mid b \text{ and } b \mid a$$
.
• $a \mid b \Leftrightarrow \langle b \rangle \subseteq \langle a \rangle$.
• $a \approx b \Leftrightarrow \langle a \rangle = \langle b \rangle$.

-∢ ∃ ▶

Definition

Let D be an integral domain and let a, b be nonzero elements in D.

- If there exists $0_D \neq d \in D$ such that $d \mid a$ and $d \mid b$, then d is called a **common divisor** of a and b.
- An element 0_D ≠ d ∈ D is called a greatest common divisor of a and b, denoted by gcd (a, b), if

() d is a common divisor of a and b,

- 2 If t is a common divisor of a and b, then $t \mid d$.
- *a* and *b* are called **relatively prime** if their only common divisors are units.

Remark: The gcd of two elements need not be unique, actually the gcd of two elements may not even exist.

Example: In the ring of even integers $2\mathbb{Z}$, 2 and no other even integer have a gcd. In *F*, there exists a gcd (a, b), since $a \mid b$ and $b \mid a$, for all nonzero $a, b \in F$.

Theorem

Let R be a PID and let a, $b \in R$ (not both zero). Then there exists a gcd (a, b). Moreover,

 $gcd(a, b) = d \Rightarrow \exists x, y \in R \text{ such that } d = ax + by.$

Definition

Let R be a commutative ring with unity and let $a, b \in R$.

- A nonzero element c that is not a unit in R is called **irreducible** element if c = ab implies either a or b is a unit. If c is not irreducible, then c is called **reducible**.
- A nonzero element p that is not a unit in R is called prime element if p | ab implies either p | a or p | b.

Remark: Let *D* be an integral domain. A nonzero and a nonunit element $c \in D$ is **irreducible** \Leftrightarrow the only divisors of *c* are the associates of *c* and the units of *D*.

Example: $\overline{3}$ is not irreducible in \mathbb{Z}_6 , but prime.

Theorem

Let R be an integral domain and let $p \in R$. Then

p is prime $\Rightarrow p$ is irreducible.

Remark: Converse of this theorem need not be true. For example $3 = 1 + 0i\sqrt{5} \in \mathbb{Z}i\sqrt{5}$ is irreducible, but not prime. (See malik, 362)

The following theorem gives information when the converse is true.

Theorem

Let R be a PID and let $p \in R$. Then

```
p is prime \Leftrightarrow p is irreducible.
```

Definition

Let D be an integral domain. D is called an **unique factorization** domain (UFD) if

Every nonzero and nonunit element of D can be factored into a product of a finite number of irreducibles, that is,

 $a = p_1 p_2 \dots p_r$

If p₁p₂...p_r and q₁q₂...q_s are two factorization of a ∈ D into irreducibles, then r = s and q_j can be renumbered so that p_i and q_i are associates.

D is UFD \Leftrightarrow Every nonzero and nonunit element of D can be uniquely expressible (except unit factors and order of factors) as a product of a finite number of irreducibles.

Theorem

Every PID is a UFD.

Example: Since \mathbb{Z} is a PID, hence \mathbb{Z} is a UFD. In \mathbb{Z} , we have

$$12=(2)\,(2)\,(3)=(-2)\,(-2)\,(3)=(2)\,(-2)\,(-3)$$
 ,

where 2 and -2 are associates, 3 and -3 are associates. So except for order and associates, the irreducible factors of 12 are same.