Lecture 11: Unique Factorization Domains

Prof. Dr. Ali Bülent EKİN
Doç. Dr. Elif TAN

Ankara University

Units and Associates

It is well known that the fundamental theorem of arithmetic holds in \mathbb{Z}. Motiveted the unique factorization into primes (irreducibles) in \mathbb{Z}, we investigate the integral domains which have this property.

Definition

Let R be a commutative ring with unity and let $a, b \in R$.

- a divides b (a is a factor of b), denoted by $a \mid b$, if $\exists c \in R$ such that $b=a c$.
- $0_{R} \neq a$ is a unit of R, if $u \mid 1_{R}$, that is, $u \in U(R)$.
- a and b are associates in R, denoted by $a \approx b$, if $a=b u$ where $u \in$ $U(R)$.

Units and Associates

Examples:

1. The only units of \mathbb{Z} are 1 and -1 . Thus the only associates of 17 in \mathbb{Z} are 17 and -17 .
2. The only units of $\mathbb{Z}[i]$ are $1,-1, i,-i$. Thus the only associates of $1+i$ are $1+i,-1+i, 1-i$ and $-1-i$.
3. All units of $F[x]$ are F^{*}. The associates of a nonconstant $f(x)$ is $u f(x)$ where u is a unit in F.

Units and Associates

Remarks:

(1) Let R be a commutative ring with unity and $a, b \in R$. The relation \approx defined by

$$
a \approx b \Leftrightarrow a=b u, u \in U(R)
$$

is an equivalence relation.
(2) Let D be an integral domain and $a, b \in D$. Then we have the followings:

- $a \approx b \Leftrightarrow a \mid b$ and $b \mid a$.
- $a \mid b \Leftrightarrow\langle b\rangle \subseteq\langle a\rangle$.
- $a \approx b \Leftrightarrow\langle a\rangle=\langle b\rangle$.

Greatest common divisor

Definition

Let D be an integral domain and let a, b be nonzero elements in D.

- If there exists $0_{D} \neq d \in D$ such that $d \mid a$ and $d \mid b$, then d is called a common divisor of a and b.
- An element $0_{D} \neq d \in D$ is called a greatest common divisor of a and b, denoted by $\operatorname{gcd}(a, b)$, if
(1) d is a common divisor of a and b,
(2) If t is a common divisor of a and b, then $t \mid d$.
- a and b are called relatively prime if their only common divisors are units.

Greatest common divisor

Remark: The gcd of two elements need not be unique, actually the gcd of two elements may not even exist.

Example: In the ring of even integers $2 \mathbb{Z}, 2$ and no other even integer have a gcd.
In F, there exists a $\operatorname{gcd}(a, b)$, since $a \mid b$ and $b \mid a$, for all nonzero $a, b \in F$.

Theorem

Let R be a PID and let $a, b \in R$ (not both zero). Then there exists a $\operatorname{gcd}(a, b)$. Moreover,

$$
\operatorname{gcd}(a, b)=d \Rightarrow \exists x, y \in R \text { such that } d=a x+b y
$$

Irreducible and prime elements

Definition

Let R be a commutative ring with unity and let $a, b \in R$.

- A nonzero element c that is not a unit in R is called irreducible element if $c=a b$ implies either a or b is a unit. If c is not irreducible, then c is called reducible.
- A nonzero element p that is not a unit in R is called prime element if $p \mid a b$ implies either $p \mid a$ or $p \mid b$.

Remark: Let D be an integral domain. A nonzero and a nonunit element $c \in D$ is irreducible \Leftrightarrow the only divisors of c are the associates of c and the units of D.

Example: $\overline{3}$ is not irreducible in \mathbb{Z}_{6}, but prime.

Irreducible and prime elements

Theorem

Let R be an integral domain and let $p \in R$. Then

$$
p \text { is prime } \Rightarrow p \text { is irreducible. }
$$

Remark: Converse of this theorem need not be true. For example $3=1+0 i \sqrt{5} \in \mathbb{Z} i \sqrt{5}$ is irreducible, but not prime. (See malik, 362)

The following theorem gives information when the converse is true.

Theorem

Let R be a PID and let $p \in R$. Then

$$
p \text { is prime } \Leftrightarrow p \text { is irreducible. }
$$

Unique Factorization Domains

Definition

Let D be an integral domain. D is called an unique factorization domain (UFD) if
(1) Every nonzero and nonunit element of D can be factored into a product of a finite number of irreducibles, that is,

$$
a=p_{1} p_{2} \ldots p_{r}
$$

(2) If $p_{1} p_{2} \ldots p_{r}$ and $q_{1} q_{2} \ldots q_{s}$ are two factorization of $a \in D$ into irreducibles, then $r=s$ and q_{j} can be renumbered so that p_{i} and q_{i} are associates.
D is UFD \Leftrightarrow Every nonzero and nonunit element of D can be uniquely expressible (except unit factors and order of factors) as a product of a finite number of irreducibles.

Unique Factorization Domains

Theorem

Every PID is a UFD.

Example: Since \mathbb{Z} is a PID, hence \mathbb{Z} is a UFD.
In \mathbb{Z}, we have

$$
12=(2)(2)(3)=(-2)(-2)(3)=(2)(-2)(-3),
$$

where 2 and -2 are associates, 3 and -3 are associates. So except for order and associates, the irreducible factors of 12 are same.

