Lecture 12: Euclidean Domains

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

< ∃⇒

э

- In group theory, the division algorithm in Z is used to show that Z is a PID.
- The division algorithm in F[x] is used to show that F[x] is a PID.
- Motivated by the division (Euclidean) algorithm in the rings \mathbb{Z} and F[x], now we investigate the integral domains which have this property.

Definition

Let *D* be an integral domain and let $v : D^* \to \mathbb{Z}^+ \cup \{0\}$ be a function from nonzero elements of *D* to nonnegative integers such that the followings are satisfied:

• For all $a, b \in D$ with $0_D \neq b$, $\exists q, r \in D$ such that a = bq + r, where either r = 0 or v(r) < v(b).

② For all
$$a, b \in D^*$$
, $v(a) \leq v(ab)$.

The function v is called a **Euclidean norm** (Euclidean valuation) on D. An integral domain D is called an **Euclidean domain** (ED) if there exists a Euclidean norm on D.

Euclidean Domains

Examples:

1. $\mathbb Z$ is a ED with the Euclidean norm

$$v: \mathbb{Z}^* \longrightarrow \mathbb{Z}^+ \cup \{0\}.$$

$$n \longrightarrow v(n) = |n|$$

- The first conditon holds by the division algorithm for \mathbb{Z} .
- The second condition follows from $|ab|=|a|\,|b|$ and $|a|\geq 1$ for $a\in \mathbb{Z}^*.$
- **2.** F[x] is a ED with the Euclidean norm

$$v: F^*[x] \longrightarrow \mathbb{Z}^+ \cup \{0\}$$

$$f(x) \longrightarrow v(f(x)) = \deg f(x)$$

- The first conditon holds by the division algorithm for F[x].
- The second condition follows from $\deg \left(f\left(x\right) g\left(x\right) \right) = \deg f\left(x\right) + \deg g\left(x\right) .$

臣▶ ★ 臣▶

3. The set of Gaussian integers

$$\mathbb{Z}[i] = \{ lpha = a + ib \mid a, b \in \mathbb{Z} \} \subseteq \mathbb{C}$$

is an integral domain. The norm function on $\mathbb{Z}[i]$ is defined by

$$N(\alpha) := \alpha \overline{\alpha} = (a + ib)(a - ib) = a^2 + b^2$$
,

where $\overline{\alpha}$ is conjugate of α .

 $\mathbb{Z}[i]$ is a ED with the Euclidean norm

$$v: \mathbb{Z}[i] \setminus \{\mathbf{0}\} \longrightarrow \mathbb{Z}^+ \cup \{\mathbf{0}\}.$$

$$\longrightarrow v(\alpha) = N(\alpha)$$

< ∃ > < ∃ >

Theorem

Every ED is a PID.

Corollaries:

- Every ED is a UFD.
- In a ED, irreducible and prime elements are the same.
- In a ED, there exists a gcd of two elements not both zero.

Euclidean Algorithm: Let D be a ED with Euclidean norm v, and let a, b be nonzero elements of D. Then $\exists q_1, r_1 \in D$ such that

$$a = bq_1 + r_1$$
, either $r_1 = 0$ or $v(r_1) < v(b)$.

If $r_1 = 0$, then gcd (a, b) = b. If $r_1 \neq 0$, then $\exists q_2, r_2 \in D$ such that

$$b = r_1 q_2 + r_2$$
, either $r_2 = 0$ or $v\left(r_2
ight) < v\left(r_1
ight)$.

Continuing this process,

 $r_{i-1} = r_i q_{i+1} + r_{i+1}$, either $r_{i+1} = 0$ or $v(r_{i+1}) < v(r_i)$.

Then the sequence r_1, r_2, \cdots must terminate with some $r_k = 0$. If r_k is the first $r_i = 0$, then $gcd(a, b) = r_{k-1}$. Moreover if gcd(a, b) = d, then $\exists x, y \in D$ such that ax + by = d.

Definition

Let *D* be an integral domain. A **multiplicative norm** *N* on *D*, is a function $N: D \longrightarrow \mathbb{Z}$ such that

(a)
$$N(\alpha) = 0 \Leftrightarrow \alpha = 0$$

(a) $N(\alpha\beta) = N(\alpha) N(\beta)$ for all $\alpha, \beta \in D$.

Theorem

 $|N(\alpha)| = 1 \Leftrightarrow \alpha$ is a unit. If every $\alpha \in D$ such that $|N(\alpha)| = 1$ is a unit in D, then an element $\pi \in D$ with $|N(\pi)| = p$ is an irreducible in D.

Euclidean Domains

Multiplicative norm is a fundamental tool in algebraic number theory.

Example: Let
$$\mathbb{Z}[i\sqrt{5}] = \left\{a + ib\sqrt{5} \mid a, b \in \mathbb{Z}\right\}$$
. Consider the multiplicative norm $N : \mathbb{Z}[i\sqrt{5}] \longrightarrow \mathbb{Z}$ by $N\left(a + ib\sqrt{5}\right) = a^2 + 5b^2$.

•
$$3 = 3 + 0i\sqrt{5} \in \mathbb{Z}[i\sqrt{5}]$$
 is irreducible.
Consider
 $3 = (a + bi\sqrt{5})(c + di\sqrt{5}).$

By the help of the norm, either $a + bi\sqrt{5}$ is a unit or $c + di\sqrt{5}$ is a unit, then 3 is irreducible.

۲

$$9=3.3=\left(2+\sqrt{-5}\right)\left(2-\sqrt{-5}\right).$$

Since 3, 2 + $\sqrt{-5}$, 2 - $\sqrt{-5}$ are irreducible, then $\mathbb{Z}[i\sqrt{5}]$ is not a UFD.