Lecture 13: Irreducible Polynomials

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

- ∢ ∃ →

Irreducible Polynomials

- If R is an integral domain $\Rightarrow R[x]$ is an integral domain.
- If F is a field \Rightarrow F[x] is not a field, but F[x] is a Euclidean domain. $U(F[x]) = F^*$ and the associates of a nonconstant f(x) is uf(x), where $u \in F^*$.

F[x] is a ED with Euclidean norm $v(f(x)) = \deg f(x)$.

• If R is a PID $\Rightarrow R[x]$ may not be a PID. \mathbb{Z} is a PID, but $\mathbb{Z}[x]$ is not a PID. In particular, in $\mathbb{Z}[x]$

$$\begin{aligned} \langle 2, x \rangle &= \{ 2f(x) + xg(x) \mid f, g \in \mathbb{Z}[x] \} \\ &= \{ 2a_0 + a_1 x + \dots + a_r x^r \in \mathbb{Z}[x] \mid r \ge 0 \} \end{aligned}$$

which does not include 1, so $\langle 2, x \rangle$ is not a PID.

• If R is a UFD \Rightarrow R[x] is a UFD.

From the definition of irreducible element, we have the following:

Definition

Let *R* be a commutative ring with unit. A nonzero and nonunit polynomial $f(x) \in R[x]$ is **irreducible polynomial** if

$$f(x) = g(x) h(x) \Rightarrow$$
 either $g(x)$ or $h(x)$ is a unit.

If $f(x) \in R[x]$ is not irreducible, then f(x) is **reducible** over R.

Remark: A nonconstant polynomial $f(x) \in F[x]$ is **irreducible polynomial** in F[x] (or irreducible over F) if f(x) can not be expressed as a product of two polynomials g(x), $h(x) \in F[x]$ such that $\deg g(x) < \deg f(x)$, $\deg h(x) < \deg f(x)$.

イロト イ団ト イヨト イヨト 二日

Irreducible Polynomials

Examples:

1. $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$, since there does not exist *a*, *b*, *c*, *d* $\in \mathbb{Q}$ such that

$$x^2-2=(ax+b)(cx+d).$$

But $x^2 - 2$ is reducible in $\mathbb{R}[x]$, since

$$x^2 - 2 = \left(x - \sqrt{2}\right)\left(x + \sqrt{2}\right)$$

where $x - \sqrt{2}$, $x + \sqrt{2} \in \mathbb{R}[x]$.

2. x^2+1 is irreducible in $\mathbb{R}[x]$, since there does not exist a, b, c, $d \in \mathbb{R}$ such that

$$x^{2} + 1 = (ax + b)(cx + d).$$

But $x^2 + 1$ is reducible in $\mathbb{C}[x]$, since

$$x^{2} + 1 = (x + i) (x - i).$$

3. Let $a \neq 0$, $ax + b \in F[x]$ is irreducible over $F_{a, a}$, $a \neq 0$, $ax + b \in F[x]$ is irreducible over $F_{a, a}$.

Now we give some useful information about the irreducibility of polynomials over $\mathbb C$ and $\mathbb R.$

- Fundamental Theorem of Algebra: Every nonconstant polynomial in C[x] has a zero in C.
- \bullet Every irreducible polynomials over $\mathbb C$ has degree 1. ($\mathbb C$ is algebraically closed.)

If $f(x) \in \mathbb{C}[x]$ has degree n, then

$$f(x) = a(x - a_1)(x - a_2) \dots (x - a_n).$$

- If α is a root of a polynomial in $\mathbb{R}[x]$, then $\overline{\alpha}$ is also a root.
- Every irreducible polynomials over $\mathbb R$ has degree 1 or 2.

It may be difficult to determine whether a given polynomial is irreducible or not. So for testing irreducibility, it would be useful to give some criteria.

- If f (x) ∈ F[x] has a root in F, then f (x) is reducible.
 Because if f (x) ∈ F[x] has a root a in F means that f (x) has a degree 1 factor; that is, x a is a factor.
- If f (x) ∈ F[x] has no root in F, then f (x) may be irreducible or not! But if we know that the degree of f (x) is 2 or 3, then it is quarantee that f (x) is irreducible.

Theorem

Let f(x) be a polynomial in F[x] with degree 2 or 3. Then

f(x) is reducible over $F \Leftrightarrow f(x)$ has a zero in F.

Example: $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 . Since f(0) = 2, f(1) = 1, f(2) = 1, f(3) = 3, f(4) = 3 which are all nonzero.

Remark: If degree of $f(x) \in F[x]$ is not 2 or 3, the theorem may not be true.

Example: $x^4 - 5x^2 + 6$ has no root in Q, but it is reducible

$$x^{4}-5x^{2}+6=(x^{2}-2)(x^{2}-3).$$

The following theorem helps to find all rational roots of polynomial in $\mathbb{Z}[x]$, if it exists. If no such a root exist, it might still possible to find a way to factor it!

Theorem (Rational Root Test)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$. Any rational number $\frac{r}{s}$ that is a root of f(x) must have $r \mid a_0$ and $s \mid a_n$.

Example: 2x + 2 is irreducible in $\mathbb{Q}[x]$. Note that 2x + 2 = 2(x + 1) where 2 is a unit in $\mathbb{Q}[x]$. Since 2 is a unit in $\mathbb{Z}[x]$, 2x + 2 is **reducible** in $\mathbb{Z}[x]$.

Definition

Let *R* be UFD. A nonconstant polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ in R[x] is called a **primitive** polynomial if gcd (a_0, a_1, \ldots, a_n) is a unit. Here, gcd of coefficients is called the **content** of f(x).

Theorem (Gauss's Lemma)

Product of two primitive polynomial is also primitive.

By the help of the Gauss's Lemma we have the followings:

Theorem

Let R be UFD, **Q** be a quotient field of R and f(x) be a nonconstant primitive polynomial in R[x].

f(x) is irreducible in $R[x] \Leftrightarrow f(x)$ is irreducible in $\mathbf{Q}[x]$.

In particular,

f(x) is irreducible in $\mathbb{Z}[x] \Leftrightarrow f(x)$ is irreducible in $\mathbb{Q}[x]$.

Theorem (Eisenstein Criterion)

Let $p \in \mathbb{Z}$ be a prime. If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ with

(1)
$$p \mid a_0, p \mid a_1, \dots, p \mid a_{n-1}$$

(2) $p \nmid a_n$
(3) $p^2 \nmid a_0$.

Then f(x) is irreducible in $\mathbb{Q}[x]$.

Example: $f(x) = x^5 + 3x^3 - 3x + 6$ is irreducible in $\mathbb{Q}[x]$ by E.K. with p = 3.

イロト イポト イヨト イヨト

Theorem (Mod p Criterion)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ and $\overline{f}(x) = \overline{a_n} x^n + \overline{a_{n-1}} x^{n-1} + \dots + \overline{a_0} \in \mathbb{Z}_p[x]$ be polynomials degree *n*. If $\overline{f}(x)$ is irreducible in $\mathbb{Z}_p[x]$, then f(x) is irreducible in $\mathbb{Q}[x]$.

Example: Show that $f(x) = x^3 + 7x + 16$ is irreducible in $\mathbb{Q}[x]$. For p = 5, we get $x^3 + \overline{2}x + \overline{1} \in \mathbb{Z}_5[x]$. Since it has degree 3 and has no root in \mathbb{Z}_5 , it is irreducible in $\mathbb{Z}_5[x]$. Hence f(x) is irreducible in $\mathbb{Q}[x]$.

Irreducible Polynomials

Example: Let $f(x) = x^4 + 1 \in \mathbb{Z}[x]$.

• The possible rational roots are ± 1 . Since $f(\pm 1) \neq 0$, it has no degree 1 factors.

We need to chech if it has degree 2 factors. That is, check if there exist *a*, *b*, *c*, *d* $\in \mathbb{Z}$ such that

$$x^{4} + 1 = (x^{2} + ax + b) (x^{2} + cx + d)$$

= $x^{4} + (a + c) x^{3} + (d + ac + b) x^{2} + (bc + ad) x + bd$

By compairing the coefficients, we have b = d = -1 and a = -c. So ac - 2 = 0 implies $a^2 = -2$, which contradicts $a \in \mathbb{Z}$. Thus $f(x) = x^4 + 1$ is irreducible over \mathbb{Q} .

Since

$$x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + d),$$

it is not irreducible over $\mathbb R$ and $\mathbb C$.

Uniqueness of Factorization of F[x]

Remark: In group theory, we used the division algorithm in \mathbb{Z} to prove that a subgroup of a cyclic group is also cyclic, which shows that \mathbb{Z} is a PID. On the other hand, the division algorithm in F[x] is used to show that F[x] is a PID.

- Every ideal of F[x] is principal.
- Every maximal ideal is prime in F[x].

Theorem

Let $p(x) \in F[x]$. Then

 $p\left(x
ight)$ is irreducible over $F \Leftrightarrow F[x] / \left\langle p\left(x
ight) \right\rangle$ is a field

So $\langle p(x) \rangle$ is a maximal ideal.

Example: $\mathbb{Z}_3[x] / \langle x^2 + 1 \rangle$ is a field since $x^2 + 1$ is irreducible over \mathbb{Z}_3 .

Basic Goal: To show that any nonconstant polynomial f(x) in F[x] has a zero in some field E containing F.

- Let p(x) be an irreducible factor of f(x) in F[x]
- 2 Let *E* be the field $F[x] / \langle p(x) \rangle$
- Show that no two different elements of F are in the same coset of F[x] / (p(x))
- Consider F to be isomorphic to a subfield of E
- So For the evaluation homomorphism $\phi_{\alpha}: F[x] \to E$, we have $\phi_{\alpha}(f(x)) = 0$. Thus α is a zero of f(x) in E.

・ロト ・回ト ・ヨト ・ヨト