Lecture 13: Irreducible Polynomials

Prof. Dr. Ali Bülent EKİN Doç. Dr. Elif TAN

Ankara University

Irreducible Polynomials

- If R is an integral domain $\Rightarrow R[x]$ is an integral domain.
- If F is a field $\Rightarrow F[x]$ is not a field, but $F[x]$ is a Euclidean domain. $U(F[x])=F^{*}$ and the associates of a nonconstant $f(x)$ is uf (x), where $u \in F^{*}$.
$F[x]$ is a ED with Euclidean norm $v(f(x))=\operatorname{deg} f(x)$.
- If R is a PID $\Rightarrow R[x]$ may not be a PID.
\mathbb{Z} is a PID, but $\mathbb{Z}[x]$ is not a PID. In particular, in $\mathbb{Z}[x]$

$$
\begin{aligned}
\langle 2, x\rangle & =\{2 f(x)+x g(x) \mid f, g \in \mathbb{Z}[x]\} \\
& =\left\{2 a_{0}+a_{1} x+\cdots+a_{r} x^{r} \in \mathbb{Z}[x] \mid r \geq 0\right\}
\end{aligned}
$$

which does not include 1 , so $\langle 2, x\rangle$ is not a PID.

- If R is a UFD $\Rightarrow R[x]$ is a UFD.

Irreducible Polynomials

From the definition of irreducible element, we have the following:

Definition

Let R be a commutative ring with unit. A nonzero and nonunit polynomial $f(x) \in R[x]$ is irreducible polynomial if

$$
f(x)=g(x) h(x) \Rightarrow \text { either } g(x) \text { or } h(x) \text { is a unit. }
$$

If $f(x) \in R[x]$ is not irreducible, then $f(x)$ is reducible over R.

Remark: A nonconstant polynomial $f(x) \in F[x]$ is irreducible polynomial in $F[x]$ (or irreducible over F) if $f(x)$ can not be expressed as a product of two polynomials $g(x), h(x) \in F[x]$ such that $\operatorname{deg} g(x)<\operatorname{deg} f(x), \operatorname{deg} h(x)<\operatorname{deg} f(x)$.

Irreducible Polynomials

Examples:

1. $x^{2}-2$ is irreducible in $\mathbb{Q}[x]$, since there does not exist $a, b, c, d \in \mathbb{Q}$ such that

$$
x^{2}-2=(a x+b)(c x+d) .
$$

But $x^{2}-2$ is reducible in $\mathbb{R}[x]$, since

$$
x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})
$$

where $x-\sqrt{2}, x+\sqrt{2} \in \mathbb{R}[x]$.
2. $x^{2}+1$ is irreducible in $\mathbb{R}[x]$, since there does not exist $a, b, c, d \in \mathbb{R}$ such that

$$
x^{2}+1=(a x+b)(c x+d)
$$

But $x^{2}+1$ is reducible in $\mathbb{C}[x]$, since

$$
x^{2}+1=(x+i)(x-i) .
$$

3. Let $a \neq 0, a x+b \in F[x]$ is irreducible over F.

Irreducible Polynomials

Now we give some useful information about the irreducibility of polynomials over \mathbb{C} and \mathbb{R}.

- Fundamental Theorem of Algebra: Every nonconstant polynomial in $\mathbb{C}[x]$ has a zero in \mathbb{C}.
- Every irreducible polynomials over \mathbb{C} has degree 1. (\mathbb{C} is algebraically closed.)
If $f(x) \in \mathbb{C}[x]$ has degree n, then

$$
f(x)=a\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right) .
$$

- If α is a root of a polynomial in $\mathbb{R}[x]$, then $\bar{\alpha}$ is also a root.
- Every irreducible polynomials over \mathbb{R} has degree 1 or 2 .

Irreducibility tests

It may be difficult to determine whether a given polynomial is irreducible or not. So for testing irreducibility, it would be useful to give some criteria.

- If $f(x) \in F[x]$ has a root in F, then $f(x)$ is reducible. Because if $f(x) \in F[x]$ has a root a in F means that $f(x)$ has a degree 1 factor; that is, $x-\mathbf{a}$ is a factor.
- If $f(x) \in F[x]$ has no root in F, then $f(x)$ may be irreducible or not! But if we know that the degree of $f(x)$ is 2 or 3 , then it is quarantee that $f(x)$ is irreducible.

Irreducibility of quadratic and cubic polynomials

Theorem

Let $f(x)$ be a polynomial in $F[x]$ with degree 2 or 3 . Then

$$
f(x) \text { is reducible over } F \Leftrightarrow f(x) \text { has a zero in } F \text {. }
$$

Example: $f(x)=x^{3}+3 x+2 \in \mathbb{Z}_{5}[x]$ is irreducible over \mathbb{Z}_{5}. Since $f(0)=2, f(1)=1, f(2)=1, f(3)=3, f(4)=3$ which are all nonzero.

Remark: If degree of $f(x) \in F[x]$ is not 2 or 3 , the theorem may not be true.

Example: $x^{4}-5 x^{2}+6$ has no root in \mathbb{Q}, but it is reducible

$$
x^{4}-5 x^{2}+6=\left(x^{2}-2\right)\left(x^{2}-3\right) .
$$

Irreducibility over Q

The following theorem helps to find all rational roots of polynomial in $\mathbb{Z}[x]$, if it exists. If no such a root exist, it might still possible to find a way to factor it!

Theorem (Rational Root Test)

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$. Any rational number $\frac{r}{s}$ that is a root of $f(x)$ must have $r \mid a_{0}$ and $s \mid a_{n}$.

Irreducibility over Q

Example: $2 x+2$ is irreducible in $\mathbb{Q}[x]$. Note that $2 x+2=2(x+1)$ where 2 is a unit in $\mathbb{Q}[x]$. Since 2 is a unit in $\mathbb{Z}[x], 2 x+2$ is reducible in $\mathbb{Z}[x]$.

Definition

Let R be UFD. A nonconstant polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ in $R[x]$ is called a primitive polynomial if $\operatorname{gcd}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a unit. Here, gcd of coefficients is called the content of $f(x)$.

Irreducibility over Q

Theorem (Gauss's Lemma)

Product of two primitive polynomial is also primitive.
By the help of the Gauss's Lemma we have the followings:

Theorem

Let R be UFD, \mathbf{Q} be a quotient field of R and $f(x)$ be a nonconstant primitive polynomial in $R[x]$.

$$
f(x) \text { is irreducible in } R[x] \Leftrightarrow f(x) \text { is irreducible in } \mathbf{Q}[x] \text {. }
$$

In particular, $f(x)$ is irreducible in $\mathbb{Z}[x] \Leftrightarrow f(x)$ is irreducible in $\mathbb{Q}[x]$.

Irreducibility over Q

Theorem (Eisenstein Criterion)

Let $p \in \mathbb{Z}$ be a prime. If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ with
(1) $p\left|a_{0}, p\right| a_{1}, \ldots p \mid a_{n-1}$
(2) $p \nmid a_{n}$
(3) $p^{2} \nmid a_{0}$.

Then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Example: $f(x)=x^{5}+3 x^{3}-3 x+6$ is irreducible in $\mathbb{Q}[x]$ by E.K. with $p=3$.

Irreducibility over Q

Theorem (Mod p Criterion)

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and $\bar{f}(x)=\overline{a_{n}} x^{n}+\overline{a_{n-1}} x^{n-1}+\cdots+\overline{a_{0}} \in \mathbb{Z}_{p}[x]$ be polynomials degree n. If $\bar{f}(x)$ is irreducible in $\mathbb{Z}_{p}[x]$, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Example: Show that $f(x)=x^{3}+7 x+16$ is irreducible in $\mathbb{Q}[x]$. For $p=5$, we get $x^{3}+\overline{2} x+\overline{1} \in \mathbb{Z}_{5}[x]$. Since it has degree 3 and has no root in \mathbb{Z}_{5}, it is irreducible in $\mathbb{Z}_{5}[x]$. Hence $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Irreducible Polynomials

Example: Let $f(x)=x^{4}+1 \in \mathbb{Z}[x]$.

- The possible rational roots are ± 1. Since $f(\pm 1) \neq 0$, it has no degree 1 factors.
We need to chech if it has degree 2 factors. That is, check if there exist $a, b, c, d \in \mathbb{Z}$ such that

$$
\begin{aligned}
x^{4}+1 & =\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right) \\
& =x^{4}+(a+c) x^{3}+(d+a c+b) x^{2}+(b c+a d) x+b d
\end{aligned}
$$

By compairing the coefficients, we have $b=d=-1$ and $a=-c$. So $a c-2=0$ implies $a^{2}=-2$, which contradicts $a \in \mathbb{Z}$.
Thus $f(x)=x^{4}+1$ is irreducible over \mathbb{Q}.

- Since

$$
x^{4}+1=\left(x^{2}-\sqrt{2} x+1\right)\left(x^{2}+\sqrt{2} x+d\right)
$$

it is not irreducible over \mathbb{R} and \mathbb{C}.

Uniqueness of Factorization of $\mathrm{F}[\mathrm{x}]$

Remark: In group theory, we used the division algorithm in \mathbb{Z} to prove that a subgroup of a cyclic group is also cyclic, which shows that \mathbb{Z} is a PID. On the other hand, the division algorithm in $F[x]$ is used to show that $F[x]$ is a PID.

- Every ideal of $F[x]$ is principal.
- Every maximal ideal is prime in $F[x]$.

Theorem

Let $p(x) \in F[x]$. Then
$p(x)$ is irreducible over $F \Leftrightarrow F[x] /\langle p(x)\rangle$ is a field
So $\langle p(x)\rangle$ is a maximal ideal.

Example: $\mathbb{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$ is a field since $x^{2}+1$ is irreducible over \mathbb{Z}_{3}.

Uniqueness of Factorization of $\mathrm{F}[\mathrm{x}]$

Basic Goal: To show that any nonconstant polynomial $f(x)$ in $F[x]$ has a zero in some field E containing F.
(1) Let $p(x)$ be an irreducible factor of $f(x)$ in $F[x]$
(2) Let E be the field $F[x] /\langle p(x)\rangle$
(3) Show that no two different elements of F are in the same coset of $F[x] /\langle p(x)\rangle$
(1) Consider F to be isomorphic to a subfield of E
(5) For the evaluation homomorphism $\phi_{\alpha}: F[x] \rightarrow E$, we have $\phi_{\alpha}(f(x))=0$. Thus α is a zero of $f(x)$ in E.

