MTH312 ALGEBRA II MIDTERM EXAM

1. Let consider $\mathbb{Z}_{2}[i]=\left\{a+i b \mid a, b \in \mathbb{Z}_{2}\right\}$ with the usual addition and multiplication of complex numbers.
(i) Is $\mathbb{Z}_{2}[i]$ a ring?
(ii) Is $\mathbb{Z}_{2}[i]$ an integral domain?
(iii) Is $\mathbb{Z}_{2}[i]$ a field?
2. Find the characteristic of the following rings.
(i) $R=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}_{3}\right\}$.
(ii) $(\mathbb{Z} / 20 \mathbb{Z}) /(5 \mathbb{Z} / 20 \mathbb{Z})$.
3. (i) Find all idempotents of the ring $\mathbb{Z} \times \mathbb{Z}$.
(ii) Determine all ring homomorphisms from $\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$.
4. Determine all prime and maximal ideals of \mathbb{Z}_{30}.
5. Let R be an integral domain and let $a \in R$. Show that $R[x] /\langle x-a\rangle \simeq R$.
6. Indicate whether each of the following statements is True (T), or False (F). Explain your answers.
a) \mathbb{Q} / \mathbb{Z} is an integral domain......
b) $\mathbb{Q} \times \mathbb{Z}_{3}$ is a field......
c) There exists a field with six elements......
d) The characteristic of an infinite ring is zero...
e) \mathbb{R} is a field of quotients of $\mathbb{Z} \ldots \ldots$
f) Every ring with unity has at least two units.......
g) $\operatorname{In} \mathbb{Z}_{7}[x],(x+\overline{1})^{7}=x^{7}+\overline{1} \ldots \ldots$.
h) Let R be a commutative ring with unity. Then every prime ideal in R is maximal......
i) If $R[x]$ has zero divisors, so does $R \ldots . .$.
j) If F is a field, then $F[x]$ is a field......

Bibliography

[1] J. B. Fraleigh, A First Course In Abstract Algebra, Addison Wesley. (7th Edition).
[2] D. S. Malik, J. M. Mordeson and M. K. Sen, Fundamentals of Abstract Algebra, Mc Graw Hill, 1997.

