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Treating solids

DFT has extended to not only crystaline solids but also glasses, miner-
als such as zeolite, polymers, DNAs, ice, and chemical solutions. Our
main concern is, of course, solids. In this chapter, we will introduce
electrons into a vast terrain of varying potentials in a solid and try to
identify the consequences. At the end, we will have a new formulation
of the KS equations in terms of Fourier coefficients and witness the for-
mation of band structures, a very important property of solids. To reach
that end, however, two obvious issues have to be resolved: the number
of electrons becomes infinite, and so does the number of atoms in solids.

We will first eliminate a large number of electrons from calculation
by the pseudopotential (PP) approach. Next, we will see how the data
from a small number of atoms become physically relevant to real mate-
rial, using the periodic nature of solids. Two schemes will be involved in
this maneuver: the periodic boundary conditions (PBC) and the supercell
approach. The size of the system for calculation will be further reduced
and transferred to the reciprocal lattice by the use of Brillouin zone (BZ)
construction and k-point sampling. Then, at the end of Sections 6.1 and
6.2, our problem for the treatment of a solid will be a small task, such as
handling a handful of k-points.



Pseudo Potential
Approach

The PP approach (Heine 1970), like the act of the pseudo-Chaplin,
mimics the true characteristics of the actual potential. The key points are
dividing electrons into two groups in terms of their contributing signifi-
cances, effectively freezing the nucleus and the core electrons together,
and pseudizing the remaining valence wave functions. This leads to a
significant reduction in the number of electrons in a system to be calcu-
lated and to a much easier description and computation of the valence
wave functions.

In this section, we will classify electrons in a solid and treat them
differently. Then, we will follow how the PPs are generated and how they
represent the true potentials effectively for the materials that may easily
consist of thousands of electrons. One can often find that any manuscript
involved in the generation of a PP is generally full of equations and nota-
tions, scaring us off just by looking at it. Fortunately, the subject does not
belong to us but to physicists or chemists. We are just the users of PPs—
hopefully intelligent users who understand the underlying concept. This
section, therefore, will address only the key points of PP generation and
its applications in DFT.



Freezing
Core
electrons

6.1.1.1 Core electrons

One may say that electrons in an atomic system are all the same as one
another in the sense that they normally have the same mass, charge, spin-

ups and downs, etc. However, their role is very much different, depend-
ing on where they are. When atoms get together to form a solid, the core
electrons (normally the electrons in the inner closed shells) stick tightly to
their nucleus in a deep potential well and remain unchanged under most
circumstances. Like small children around their mother, the core electrons
stay in that well and rarely participate in any change of the system.

In other words, they are so localized that they do not notice whether
they are in an atom or in a solid, and only oscillate rapidly due to the

strong Coulomb potential by nuclei. And, at the same time, they neutral-

ize the nuclei’s charges as much as -1 per electron (in the same way that
small children get the mother’s immediate attention and love). Thus, their
contribution to bonding is minimal when isolated atoms are brought
together to form a molecule or a crystal.



Valance

electrons
6.1.1.2 Valence electrons

On the contrary, like big brothers away from their mother, the valence
electrons far from their nucleus and high above the potential well are
rather independent and quite active in everything. They are the ones
forming bonds, being ionized, conducting electricity in metals, forming

bands, and performing other atomic activities. In metals, they can even
travel the whole solid almost like a PW. In covalent or ionic solids,
they are not as free as PW but roughly maintain the general picture
described above.




6.1.1.3 Frozen-core approximation

From the computational viewpoint, we may simply remove the core
(nucleus plus core electrons) from the picture and deal with only the active
valence electrons. This is called frozen-core approximation, which is sche-
matically shown in Figure 6.2. The nuclear charge is now largely screened
by the core electrons and has much less effect (weaker and smoother
attractive force) on the valence electrons.

Note that, in this example in Figure 6.2, the calculation load is
already cut by one third. It is more impressive when we go down on the
periodic table. For example, the frozen-core model for Pt only accounts
for 10 valence electrons (5d® and 6s') out of a total of 78 electrons
([Xe]4f*5d%6s'). The actual benefit is much more than what these num-
bers indicate as we further adopt the pseudization scheme. To make
the atomic system of frozen-core physically relevant and applicable in
practice, several missing details and requirements have to be added.




6.1.2 Pseudizing the valence electrons

When a valence wave function passes by the highly localized core
region, it oscillates rapidly with many wiggles to be orthogonal to the
core states as schematically shown in Figure 6.3 (the upper curve with
two nodes). Remember that the orthogonal criterion guarantees each
wave function to be unique and independent and thus to obey the Pauli
exclusion principle.

Figure 6.2 Atomic system of carbon showing the frozen core and valence electrons
for the construction of a pseudopotential.
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Figure 6.3 Schematic of a pseudo wave function pseudized from a 3s wave
function (showing the relative amplitude in arbitrary unit) and the correspond-
ing pseudo- and all-electron (AE) potentials.

This kind of wave function with many nodes is simply a headache. It
is neither convenient to be expressed in a simple formula nor easy to be
solved computationally. It would be highly appropriate if we could modu-
late the function to a featureless curve without any of those useless nodes.
With the frozen-core approximation, the situation is just right to do that
since the valence electrons are now the lowest-lying states, and there is
no core electron underneath with which to be orthogonal. Thus, we can
“soften” both the wave functions of the valence electrons and their poten-
tials with ions. This procedure is specifically termed as pseudization.



6.1.2.1 Pseudizing procedure
Figure 6.3 shows an example of the all-electron (AE) and pseudized wave
functions and the corresponding potentials. The standard pseudization
steps are

¢ Select an atom as the reference state so that the formulated atomic PP
can have both transferable and additive properties in application to
different environments or many-atom systems.

¢ Calculate the exact AE potential, wave function, and energy by the
DFT calculation with the use of the convenient spherical symmetry
of atom; perform a precalculation for the core electrons and keep
them frozen for the rest of the calculations.



Choose a proper r, of the atom and make the core part (r < r.) of the
wave function nodeless and smoother.

At r = r, make the first and second derivatives of pseudo- and AE
wave functions equal to ensure right scattering characteristics for
incoming waves under the different atomic environments.

At r >r, make the pseudo and AE wave functions exactly the same
since the AE wave function in this part largely decides the behavior
of the atom.

Make the eigenvalues (energies) of the smooth pseudo and original
AE wave functions the same.

Generate a PP from the pseudo wave function and the valence elec-
tron density, and parameterize it in spherical Bessel or Gaussian
functions for immediate use.



6.1.2.2 Benefits

In addition to the immediate benefit of removing the core electrons from
calculation, other benefits are also recognized:

¢ The number of PWs needed for the expansion of a pseudo wave
function is markedly reduced, and the calculations becomes much
faster accordingly (see Section 6.4). When the DFT is armed with a
PP and orbitals expanded with PWs, it becomes powerful enough
to deal with thousands of electrons and opens up a wide range of
problems to first-principles calculation.

¢ Since we normally calculate energy changes about 0.1-1.0 eV per
systemin a typical DFT run, any energy change calculated by DFT
becomes more noticeable since a large portion of the unchang-
ing energy is taken out as the core energy from calculation. For
example, aluminum (Al) has a core potential of about -1,700 eV
that will be removed by pseudization, and a valence (3s* and 3p'
electrons) potential of about -10 eV will remain and is subjected
to change.

¢ The errors involved by using PPs are normally less than a couple
of percentages.



* The PP approach eliminates the relativistic effect from the system
since the core electrons in heavier atoms are most prone to relativity.

After this simplification, the KS equations can be rewritten with the PP
(replacing the U,;) and pseudized wave functions, which leads to a different

charge density:
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Therefore, the wave function and the charge density at the core resister
only the pseudized values.

6.1.3 Various pseudopotentials

In the following, three common types of PPs are briefly mentioned: norm-

conserving PPs, ultrasoft PPs (USPPs), and projector-augmented wave
(PAW) PPs.



6.1.3.1 Norm-conserving PPs

If the pseudo- and AE charge densities within the core are constructed

to be equal, the type of PP is called the norm-conserving PP (Hamann,
Schluter, and Chiang 1979; Troullier and Martins 1991). Many PPs are
generated to meet this criterion:

0

With this scheme, nothing is noticed differently for the valence electrons
since the net charge from the core remains the same. Compared to AE
methods, however, these PPs give only the valence charge densities, not
the total charge densities.
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6.1.3.2 Ultrasoft PPs
If we forget about the norm-conserving condition and, in addition to the
elimination of radial nodes, shift the peak position of a wave function fur-
ther to a bigger r, with reduced peak height, we can in fact make the pseudo

wave function as flat as an upside-down bowl. The potentials so generated
are called ultrasoft PPs (USPPs; Vanderbilt 1990). As will be discussed in
Section 6.4, this type of pseudo wave function with reduced amplitude can

be easily expanded with a smaller number of PWs (smaller cutoff energy)
that gives a great benefit in computation (up to ~10 times faster). USPPs also
give only valence charge densities, not total charge densities.



6.1.3.3 PAW potentials

Projector-augmented wave (PAW) potential may be classified as a frozen-
core AE potential. This type, first proposed by Bléchl (1994) and adopted
by Kresse and Joubert (1999), aims for both the efficiency of the PP and
the accuracy of the AE potential. It maps both core and parts of valence
wave functions with two separate descriptions as shown in Figure 6.4.

The yy0f the valence part is represented with the PW expansion,
while the ¥, of the core part is projected on a radial grid at the atom cen-
ter. After the additive augmentation of these two terms, the overlapping
part, V., is trimmed off to make the final wave function, Y.y, very close
to the AE wave function:

“I"PAW = w:’nler + wcore + Wnct (64)

Owing to the use of V¥, the core part is well reproduced, and many
PWs become unnecessary. Thus, the PAW potential calculates results as
accurate as the AE full-potential approach with much less computational
effort. Note that this method returns the AE charge density of valence
orbitals that cannot be obtained by other standard PPs.
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Figure 6.4 Schematic illustration of the wave components used for the construction
of PAW.



6.2 Reducing the calculation size

Nature displays a variety of periodic events: the sun goes up and down,
and the spring comes and summer follows. These temporal repetitions let
us prepare for tomorrow and plan for the future. Being a part of nature,
most solids are also characterized by the structural periodicity that is
absent in the amorphous or liquid phase. Thus, if one crystal cell has two
atoms, another one will have two atoms in the same arrangement. In the
computational treatment of materials, we try to reduce the system to be
calculated as small as possible, and our approach relies heavily on this
periodicity of solids. The general flow along this reduction maneuver is
outlined in Figure 6.5, which includes the following;:

¢ A solid is first reduced into a supercell made of several unit cells.
The constructed supercell is extended to infinity by the PBC.

¢ The supercell is transformed into reciprocal space and contained in
a first BZ. Here, all electronic wave functions are effectively mapped
with wave vector k and reciprocal lattice vector G, and thus all
properties are effectively represented by the Bloch equations.

¢ The first BZ is further reduced to a irreducible Brillouin zone (IBZ)
by symmetry operations without losing any information.

¢ The IBZ is mapped with discrete k-points, and all necessary quan-
tities are obtained by integration/summation/extrapolation on
these points.



A solid is first reduced into a supercell made of several unit cells.
The constructed supercell is extended to infinity by the PBC.

The supercell is transformed into reciprocal space and contained in
a first BZ. Here, all electronic wave functions are effectively mapped
with wave vector k and reciprocal lattice vector G, and thus all
properties are effectively represented by the Bloch equations.

The first BZ is further reduced to a irreducible Brillouin zone (IBZ)
by symmetry operations without losing any information.

The IBZ is mapped with discrete k-points, and all necessary quan-
tities are obtained by integration/summation/extrapolation on
these points.
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Figure 6.5 Approaches used for the treatment of solids.



6.2.1 Supercell approach under periodic boundary conditions

PBC was discussed in Chapter 2 when we dealt with MD, and it applies
here in exactly the same way. Here, the supercell is duplicated periodically
throughout the space in all directions. Therefore, even if we simulate a
very small box called a supercell (several unit cells to represent the system
that one intends to simulate), it can effectively represent a bulk solid. The
actual calculation takes place only in the single supercell, and the remaining
image supercells (26 in the nearest and more) simply copy it, which causes
no significant computational cost.

If the system contains a nonperiodic entity such as a vacancy as sche-
matically shown in Figure 6.6 in two dimensions, we can apply the same
approach by including the vacancy into the supercell. Note that, however,
the supercell must be sufficiently big so that we can safely assume that the
interactions between the vacancy and its images in neighboring super-
cells are negligible.



This supercell approach under PBC can be conveniently extended to any
system: bulk, atom, slab, or cluster as shown in Figure 2.10, and thus we can
effectively mimic any actual solid behavior. The problem thus becomes one
of solving the KS equations only within a single supercell. These imposed
tricks can be used only if the supercell is neutral in charge and does not
have any dipole moment. If there is any, a correction is necessary.

Figure 6.6 Two supercells under the periodic boundary conditions showing the
interaction distance of four lattices between vacancies.



Real Space Reciprocal Space

Figure 6.8 Relationship between a supercell in the real space and the correspond-
ing reciprocal lattice in the reciprocal space in two dimensions.




6.2.2.2 The first Brillouin zone

Like a primitive cell in the real space, the first BZ is a primitive cell of the
reciprocal lattice. In two dimensions, for example, it is constructed by the
following steps (see Figure 6.10):

e Draw a reciprocal lattice.

¢ Draw lines from a reference lattice point to its nearest neighbors and
bisect the lines perpendicularly.

¢ The formed square (polygon in three dimensions) with these bisect-
ing lines is the first BZ.

The first BZ in three dimensions can be constructed similarly but is much
more complicated. Taking the surfaces at the same bisecting distances
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Figure 6.10 Construction steps of the 1st Brillouin zone (grey area) of two-
dimensional square lattice.

from one lattice point (I-point) to its neighbors, the volume so formed
becomes the first BZ. An example is shown in Figure 6.11 for the first BZ
of an FCC lattice. It also shows some of the special points and lines of
symmetry that become important when we discuss the k-points later.
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Figure 6.12 Equivalent wave vectors in the reciprocal lattice.
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Figure 6.11 First Brillouin zone of FCC lattice showing some of the high symmetry
lines and points.



6.4.3 KS orbitals and bands

We are now at the final stage of discussion for solids in relation to the
DFT. As schematically shown in Figure 6.15, we reduced a solid into

n/2 KS orbitals for each k-point (with weight)

;

KS energy sets {e,;}

:

Total Energy
Band Structure
DOS (Density of States)

Figure 6.15 Data production from the solutions of KS equations.
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Figure 6.16 Band structures of a free-electron system showing energy curves in
terms of k-vector in extended (left) and reduced (right) presentations.

a wedge-shaped IBZ from which a set of KS orbital energies, {€ }, is
calculated. In this subsection, we will follow the process of electrons
forming bands in solids.



6.4.3.1 Band structure of free electron

Let us first draw a band structure for a free electron. A free electron has
only kinetic energy as given in Equation 6.25. Figure 6.16 illustrates the
band structures of a free electron showing energy curves in an extended
(left) and a reduced (right) presentation. Note that the energy curves
are continuous without any gap and any state with k beyond the first BZ
(shown up to +2G in Figure 6.16) is the same to a state inside the first BZ
with a different band index n.

6.4.3.2 Band structure of electrons in solids

The first thing happening on the electrons in solids is the formation of
bands. When atoms areisolated, each electron occupies specificand discrete
orbitals: 1s, 2p, 2d, etc. When they form a solid, the core electrons remain
as they are, sticking to their nuclei in deep potential wells (U «-1/7). The
valence electrons, however, meet each other in solids and try to occupy
the same energy level. For example, in an N-atom system, there will be N
3d-orbitals trying to occupy the 3d-energy level. Eventually, they settle
down by sharing the 3d-energy level together and form the energy band
as shown in Figure 6.17. In this energy band, all the N energy levels from
each atom are separated by almost indistinguishable differences. Among
the valence bands, the band with higher energy is wider since its electrons
interact more actively.
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Figure 6.17 Formation of bands and band gaps when isolated atoms become vari-
ous solids.



6.4.3.3 Density of states

The electronic structure of a solid can be characterized in another way,
that is the density of states (DOS) diagram (see Chapter 7, Section 7.8). The
DOS defines the number of electronic states per unit energy range. For a

free electron in one-dimension, the energy relation is
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And, the total number of states, n(g), is
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The DOS is then
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The DOS of a free-electron system at 0 K is illustrated in Figure 6.18 as
the solid curve, indicating the maximum DOS that an energy level can

possibly have.
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Figure 6.18 DOS of a free-electron system at 0 K. (The dark area represents

occupied energy levels.)



Furthermore, the integral of DOS up to the Fermi level gives the total
number of electrons in the system:

J' " D(e)de =7 (6.36)

Whether any particular state is occupied by electron or not is decided
by the Fermi-Dirac distribution function, f(€) (Dirac 1926; Fermi 1926) at
nonzero temperatures:

j:D<e)f(e>=n 6.37)

At a finite temperature, there will be a change of the DOS line at the Fermi
energy, that is, some electrons are thermally excited and cross over the
Fermi line, changing the line to a reversed “S” curve. The actual band
structure and DOS are much different from this simple case but have sim-
ilar features (see Section 7.8).



6.5.2.1 Gaussian smearing
The Gaussian smearing method creates a finite and fictitious electronic

temperature (~0.1 eV) using the Gaussian-type delta function just like
heating the system up a little, and thus broadens the energy levels
around the Fermi level.

6.5.2.2 Fermi smearing

The Fermi smearing method also creates a finite temperature using the
Fermi-Dirac distribution function (Dirac 1926; Fermi 1926) and thus
broadens the energy levels around the Fermi level:

1
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Here, Er is Fermi energy, kz is Boltzmann’s constant, and T is absolute
temperature. Now, eigenstates near the Fermi surface are neither full nor
empty but partially filled, and singularity is removed at that point during
calculation. Note that electronic thermal energy is roughly k;T, which
corresponds to about 25 meV at 300 K (see Figure 6.19).



6.5.2.3 Methfessel-Paxton smearing

This method as suggested by Methfessel and Paxton (1989) is one of the
most widely used methods in practice with a single parameter o. It uses
step function expanded into polynomials and Gaussian function.

Eg

Energy

Figure 6.19 Generation of partial occupancies around the Fermi level by smearing,.



6.6.2.1 Hellmann—Feynman forces

Forces on atoms arise from both atomic and electronic sources, and the
Hellmann-Feynman theorem (Feynman 1939; Hellmann 1937) provides
an efficient way to account for them, which does not require any addi-
tional effort (e.g., calculation of d¢,dr,) other than normal electronic mini-
mization. The theorem states that, if an exact H and the corresponding ¢.
are calculated, the force on an atom is the expectation value of the partial
derivative of H with respect to atomic position .. Since only two potential
terms are related to r;, the theorem leads to

v _ J-a%‘:"p(r)dr (6.43)




