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8. Durum Yogunluklari ve Fermi Yuzeyleri

9. Katilarin Elastik Ozellikleri:
Elastik sabitleri, Young Modulu..

10. Katilarin Optik Ozellikleri:
Dielektrik sabitleri, Yansima, sogurma, sonim katsayilari, kirilma indisi

11. Katilarin Titresimsel Ozellikleri:
Fononlar
12. Kristal yapinin programlama yardimiyla kurulmasi
13. Katinin elektronik bant yapisinin programlama yardimiyla cizdirilmesi

14. FINAL SINAVI



Katilarin Elastik Ozellikleri:
Elastik sabitleri, Young, Shear Modulleri..



13.2 Elasticity

Elasticity is a fundamental property of materials. Springs of all kinds are examples of
elastic bodies. Let us consider the characteristics of a spring. We find that a spring will
respond to distorting force and then return to its original shape after the distorting force
is removed. Any material or body can be deformed by an applied force. If it returns to
its original shape after the force is removed, it is said to be elastic. Most substances are
elastic to some degree. In a technical sense a substance with a high elasticity is one that
requires a large force to produce a distortion-for example, a steel sphere.

A multiple flash photograph of a
bouncing ball. Many physics
principles can be studied in this

picture—projectile motion, trans-
formation of energy, changes of
momentum, elastic properties of
material, among others. How would
the picture be altered if the ball and
surface that it strikes were perfectly
elastic? (Picture from PSSC Physics,
D.C. Heath and Company, Lexington
Mass, 1965.)




13.3 Hooke's Law
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FIGURE 13.2

Hooke's law, F = kx, governs the
stress-strain relationship within the
elastic limits.

In 1676 in his study of the effects of tensile
forces, Robert Hooke formulated and stated
the law that is still used to define elastic
properties of a body. He observed that the
increase in length of a stretched body is

proportional to applied force F as shown in the
experiment above Figure 13.1.

F=kx (13.3)

Where x is the length increase (m), and k is a
roportionality constant or spring constant

FN}D m). This equation is shown graphically in

Figure 13.2. Note that k is the slope of the line.
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Fig. 6.1 The left panel shows schematic stress-strain curves for brittle and ductile solids.
The elastic regime corresponds to the portion of the diagram where the strain is proportional
to the stress. The ball-and-stick models on the right show the valence electron density
distribution in silicon (brittle) and tungsten (ductile). Si atoms form covalent bonds and
the charge is localized between nearest-neighbour atoms. W atoms form metallic bonds and
the charge is spread all over the crystal. In both cases the density isovalue corresponds to 0.3
electrons/A®.



Ornekler:
Brittle : Al,O,, yariiletken silikon

Ductile: Platin, bakir, tungsten
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Brittle fracture and plastic deformations are very complex
phenomena which are related to the presence of

dislocations and grain boundaries.

before




AU, of the total potential energy as the work of the external forces:

h+Az
AU = / F(z)dz
h

where F is the sum of the external forces acting on the atoms of the topmost layer, which are displaced from
height h to h + Az. The bottom layer is fixed, hence the work done by the external forces there is zero. Since by
definition the applied stress corresponds to the external force per unit area, o = F/A, and the displacement of
the top layer can be expressed in terms of the strain, € = Az/h, we can rewrite egn as follows:

AU:Q/ o de
0

with Q = Ah the volume of one periodic repeat unit of the slab. The last step is to observe that we are in the
elastic regime and therefore by definition the stress is proportional to the strain. By introducing the elastic

constant, C, such that we obtain: B
o =Cleg,
AU 1
—— = -Cé€.
Q 2 1 oU

Therefore a simple derivative yields the stress in terms of the total energy: _ O He
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Fig. 6.3 Elastic deformation of a two-dimensional square lattice. The panel on the left
shows the displacements of atoms Aop—As according to the deformation e,z of eqn 6.7.
The components e,, and e,, of the deformation are referred to as ‘normal strain’ and are
associated with dilations of the solid. The components e,, and e,, are referred to as ‘shear
strain’ as they involve the sliding of the two opposite faces of the square. The displacements
are highly exaggerated in the figure for clarity, but in reality they are very small: of the
order of 0.0la. An example of a two-dimensional square lattice is the basal CuQO, plane of
the copper oxide LazCuQO4, where Cu atoms lie at the vertices of a square and the O atoms
lie in the middle of its sides (light blue area in the middle panel). In the crystallographic
unit cell the CuO; planes are stacked on top of each other and are separated by LaO layers
(right panel). Copper oxides such as La2CuQO4 have been investigated in great detail since
they exhibit high-temperature superconductivity upon p-type doping (Pickett, 1989).



Figure 6.11 Typical
engineering stress—
strain behavior to
fracture, point F.
The tensile strength
TS is indicated at
point M. The circular
insets represent the
geometry of the
deformed specimen
at various points
along the curve.
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Voigt notation, strain tensor

€af =

€xx €Exy €xz

EZZ

Hooke’s Law in Voigt notation:

O; — Cij Gj

€1 €g €5
€2 €4



