CONTROL SYSTEMS

Doç. Dr. Murat Efe

This week's agenda

Concept of Stability

- Stability Analysis of the Closed Loop System by Routh Criterion
- State Space Representation and Stability

P-3 Concept of Stability

What is stability?

- Stability is a property of the system regardless of the signals at the inputs and outputs
- Stability is an underlying requirement in every control system

Why do we need to analyze stability?

An unstable system is potentially dangerous!
When the power is turned on, the output will increase (decrease/oscillate) indefinitely...
Eventually this will damage the physical setup

P-3 Stability Analysis of the Closed Loop System by Routh Criterion

Consider the feedback loop

ROW #3 Evaluate till the remaining bs are all zero

$$b_{1} = \frac{a_{1}a_{2} - a_{0}a_{3}}{a_{1}}$$
$$b_{2} = \frac{a_{1}a_{4} - a_{0}a_{5}}{a_{1}}$$
$$b_{3} = \frac{a_{1}a_{6} - a_{0}a_{7}}{a_{1}}$$
:

ROW #4 Evaluate till the remaining cs are all zero

$$c_{1} = \frac{b_{1}a_{3} - a_{1}b_{2}}{b_{1}}$$

$$c_{2} = \frac{b_{1}a_{5} - a_{1}b_{3}}{b_{1}}$$

$$c_{3} = \frac{b_{1}a_{7} - a_{1}b_{4}}{b_{1}}$$

$$\vdots$$

ROW #5 Evaluate till the remaining bs are all zero

$$d_{1} = \frac{c_{1}b_{2} - b_{1}c_{2}}{c_{1}}$$

$$d_{2} = \frac{c_{1}b_{3} - b_{1}c_{3}}{c_{1}}$$

$$d_{3} = \frac{c_{1}b_{4} - b_{1}c_{4}}{c_{1}}$$

$$\vdots$$

 s^n a_0 a_4 a_6 a_2 s^{n-1} a_1 a_3 a_5 a_7 s^{n-2} b_1 b_4 b_2 b_3 s^{n-3} c_1 c_4 c_2 C_3 s^{n-4} d_1 d_2 d_3 d_4 . S^{2} e_1 e_2 s^1 s^0 g_1

- Repeat the same pattern till you reach the end i.e. g₁
- The complete array of coefficients is triangular
- Dividing or multiplying any row by a positive number can simplify the calculation without altering the stability conclusion

Routh's stability criterion states that

For
$$T(s) = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

The number of poles on the right hand s-plane is equal to the number of sign changes in the first column of the table

Note that, we only need the signs of the numbers in the first column

In other words...

First Example Recall that we analyzed the following diagram in I-Controller

First Example

Did we have to choose K_i=1? NO!

$$T(s) = \frac{K_i}{s^2 + s + K_i}$$

For no sign change in the first column, K_i>0 is required. Any positive integral gain would work fine

First Example - System Output

Small $K_i \Rightarrow$ Overdamped (Approaches very slowly) Large $K_i \Rightarrow$ Underdamped (More quickly but with oscillations)

First Example Where do the oscillations come from?

$$T(s) = \frac{K_i}{s^2 + s + K_i}$$

$$\Delta = 1 - 4K_i$$

$$s_{1,2} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - K_i}$$

$$K_i = 0$$

$$K_i = 1/4$$

$$K_i > 1/4$$

First Example Where do the oscillations come from?

0<K_i<1/4 Distinct real poles

 $K_i = 1/4$ Double poles at s = -1/2

K_i>1/4 Complex conjugate poles with real parts -1/2

First Example - Controller Output

Small $K_i \Rightarrow$ Overdamped (Approaches very slowly) Large $K_i \Rightarrow$ Underdamped (More quickly but with oscillations)

First Example - Error Signals

First Example - Remarks

We learned how to check stability of the closed loop (CL) TF
 A set of controller gains (K_i for this example) can result in stable CL. We analyzed what happens with different values
 We learned what questions to ask in the design phase

Determine the range of K for stability

The characteristic equation is

$$s^4 + 3s^3 + 3s^2 + 2s + K = 0$$

Second Example (Textbook pp.237)

$$s^{4} + 3s^{3} + 3s^{2} + 2s + K = 0$$

$$s^{4} \quad 1 \qquad 3 \quad K$$

$$s^{3} \quad 3 \qquad 2 \quad 0$$

$$s^{2} \quad 7/3 \qquad K$$

$$s^{1} \quad 2 - (9/7)K$$

$$s^{0} \qquad K$$

$$0 < K < \frac{14}{9}$$

Handling the special cases - Example 1 A zero in the first column

Handling the special cases - Example 1 A zero in the first column

No sign change means no roots on the right half s-plane

In this example, two roots were at s=±j

$$s^3 + 2s^2 + s + 2 = 0$$

$$s^{3} \qquad 1 \qquad 1$$
$$s^{2} \qquad 2 \qquad 2$$
$$s^{1} \qquad 0 \approx \varepsilon$$
$$s^{0} \qquad 2\varepsilon/\varepsilon = 2$$

Handling the special cases - Example 2 A zero in the first column

$$s^{3} - 3s + 2 = 0$$
One sign change
One sign change
$$s^{2} = 0 \approx \varepsilon = 2$$

$$s^{1} = -3 - 2/\varepsilon$$

$$s^{0} = 2$$
Two sign changes mean two roots on the right half s-plane

$$s^{3} - 3s + 2 = (s - 1)^{2}(s + 2) = 0$$

Handling the special cases - Remarks

No sign change, i.e. no roots on the right half s-plane

But, there are a pair of imaginary roots

Handling the special cases - Remarks

