CONTROL SYSTEMS

Doç. Dr. Murat Efe

WEEK 5

This week's agenda

- Concept of Stability
- Stability Analysis of the Closed Loop System by Routh Criterion
- State Space Representation and Stability

P-3 Concept of Stability

What is stability?

- Stability is a property of the system regardless of the signals at the inputs and outputs
- Stability is an underlying requirement in every control system

Why do we need to analyze stability?

- An unstable system is potentially dangerous!
- When the power is turned on, the output will increase (decrease/oscillate) indefinitely...
- Eventually this will damage the physical sety

P-3 Stability Analysis of the Closed Loop System by Routh Criterion

Consider the feedback loop

$$
\frac{Y(s)}{R(s)}=\frac{P(s) C(s)}{1+P(s) C(s) F(s)}=T(s)
$$

圆lecedbackloop
 Ele Edit Yiew Simulation Format Tools

Ready

$$
T(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

$$
\begin{array}{cccccccc|}
s^{n} & a_{0} & a_{2} & a_{4} & a_{6} & \cdot & \cdot & \cdot \\
s^{n-1} & a_{1} & a_{3} & a_{5} & a_{7} & \cdot & \cdot & \cdot \\
s^{n-2} & b_{1} & b_{2} & b_{3} & b_{4} & \cdot & \cdot & \cdot \\
s^{n-3} & c_{1} & c_{2} & c_{3} & c_{4} & \cdot & \cdot & \cdot \\
s^{n-4} & d_{1} & d_{2} & d_{3} & d_{4} & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \frac{Y(s)}{R(s)}=\frac{P(s) C(s)}{1+P(s) C(s) F(s)}=T(s) \\
s^{2} & e_{1} & e_{2} & \\
s^{1} & f_{1} & & T(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}} \\
s^{0} & g_{1} & &
\end{array}
$$

ROW \#3

Evaluate till the remaining bs are all zero

$$
\begin{gathered}
b_{1}=\frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \\
b_{2}=\frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \\
b_{3}=\frac{a_{1} a_{6}-a_{0} a_{7}}{a_{1}} \\
\vdots
\end{gathered}
$$

Evaluate till the

 remaining cs are all zero$$
\begin{aligned}
& c_{1}=\frac{b_{1} a_{3}-a_{1} b_{2}}{b_{1}} \\
& c_{2}=\frac{b_{1} a_{5}-a_{1} b_{3}}{b_{1}}
\end{aligned}
$$

$$
c_{3}=\frac{b_{1} a_{7}-a_{1} b_{4}}{b_{1}}
$$

$$
\begin{array}{ll}
s^{2} & e_{1} \\
s^{1} & f_{1} \\
s^{0} & g_{1}
\end{array}
$$

ROW \#5

Evaluate till the

 remaining bs are all zero$$
d_{1}=\frac{c_{1} b_{2}-b_{1} c_{2}}{c_{1}}
$$

$$
d_{2}=\frac{c_{1} b_{3}-b_{1} c_{3}}{c_{1}}
$$

$$
d_{3}=\frac{c_{1} b_{4}-b_{1} c_{4}}{c_{1}}
$$

$$
c_{1}
$$

$s^{n} \quad a_{0} \quad a_{2} \quad a_{4} \quad a_{6}$ $s^{n-1} \quad a_{1} \quad a_{3} \quad a_{5} \quad a_{7}$ $s^{n-2} \quad b_{1} \quad b_{2} \quad b_{3} \quad b_{4}$ s^{n-3}

$$
\vdots
$$

s^{n}	a_{0}	a_{2}	a_{4}	a_{6}	\cdot	\cdot	\cdot
s^{n-1}	a_{1}	a_{3}	a_{5}	a_{7}	\cdot	\cdot	\cdot
s^{n-2}	b_{1}	b_{2}	b_{3}	b_{4}	\cdot	\cdot	\cdot
s^{n-3}	c_{1}	c_{2}	c_{3}	c_{4}	\cdot	\cdot	\cdot
s^{n-4}	d_{1}	d_{2}	d_{3}	d_{4}	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot					
\cdot	\cdot	\cdot					
\cdot	\cdot	\cdot					
s^{L}	e_{1}	e_{2}					
s^{1}	f_{1}						
s^{0}	g_{1}						

Remarks

国 Repeat the same pattern till you reach the end i.e. g_{1}
The complete array of coefficients is triangular
国 Dividing or multiplying any row by a positive number can simplify the calculation without altering the stability conclusion

Routh's stability criterion states that

For

$$
T(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

The number of poles on the right hand s-plane is equal to the number of sign changes in the first column of the table

Note that, we only need the signs of the numbers in the first column

In other words...

s^{n}	a_{0}	a_{2}	a_{4}	a_{6}	\cdot	\cdot	\cdot
s^{n-1}	a_{1}	a_{3}	a_{5}	a_{7}	\cdot	\cdot	\cdot
s^{n-2}	b_{1}	b_{2}	b_{3}	b_{4}	\cdot	\cdot	\cdot
s^{n-3}	c_{1}	c_{2}	c_{3}	c_{4}	\cdot	\cdot	\cdot
s^{n-4}	d_{1}	d_{2}	d_{3}	d_{4}	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot				These	
\cdot	\cdot					have	
\cdot	\cdot	\cdot				for s	
s^{2}	e_{1}	e_{2}					
s^{1}	f_{1}						
s^{0}	g_{1}						

First Example

Recall that we analyzed the following diagram in I-Controller

First Example

Did we have to choose $\mathrm{K}_{\mathrm{i}}=\mathbf{1}$? NO.

$$
T(s)=\frac{K_{i}}{s^{2}+s+K_{i}}
$$

s^{2}	1	K_{i}
s^{1}	1	
s^{0}	K_{i}	

For no sign change in the first column, $\mathrm{K}_{\mathrm{i}}>0$ is required. Any positive integral gain would work fine

First Example - System Output

Notice that what
they do ultimately
are the same, but
how they do differ.

First Example
 Where do the oscillations come from?

$$
T(s)=\frac{K_{i}}{s^{2}+s+K_{i}}
$$

$$
\Delta=1-4 K_{i}
$$

$$
s_{1,2}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-K_{i}}
$$

First Example
 Where do the oscillations come from?

$0<\mathrm{K}_{\mathrm{i}}<1 / 4$
Distinct real poles
X
$K_{i}=1 / 4$
Double poles at $\mathrm{s}=-1 / 2$
$K_{i}>1 / 4$
Complex conjugate poles with real parts
-1/2

$$
K_{i}=0
$$

$$
K_{i}=1 / 4
$$

First Example - Controller Output

First Example - Error Signals

How fast you want the error signal come down to zero?

> This signal is the input to the controller. Is that physically applicable to your controller?

First Example - Remarks

国 We learned how to check stability of the closed loop (CL) TF
A set of controller gains (K_{i} for this example) can result in stable CL. We analyzed what happens with different values
国 We learned what questions to ask in the design phase

Second Example

困 example2_pp237

$$
\begin{aligned}
& G(s)=\frac{K}{s\left(s^{2}+s+1\right)(s+2)} \\
& T(s)=\frac{G}{1+G}=\frac{K}{s\left(s^{2}+s+1\right)(s+2)+K}
\end{aligned}
$$

Determine the range of K for stability

The characteristic equation is

$$
s^{4}+3 s^{3}+3 s^{2}+2 s+K=0
$$

Second Example (Textbook pp.237)

$$
s^{4}+3 s^{3}+3 s^{2}+2 s+K=0
$$

s^{4}	1	3	K
s^{3}	3	2	0
s^{2}	$7 / 3$	K	
s^{1}	$2-(9 / 7) K$		
s^{0}	K		

$\begin{gathered}2-(9 / 7) K>0 \\ K>0\end{gathered}$
$0<K<\frac{14}{9}$

Handling the special cases - Example 1 A zero in the first column

Handling the special cases - Example 1 A zero in the first column

No sign change means no roots on the right half s-plane

In this example, two roots were at $\mathrm{s}= \pm \mathrm{j}$

$$
s^{3}+2 s^{2}+s+2=0
$$

Handling the special cases - Example 2 A zero in the first column

回 Two sign changes mean two roots on the right half s-plane

$$
s^{3}-3 s+2=(s-1)^{2}(s+2)=0
$$

Handling the special cases - Remarks

No sign change, i.e. no roots on the right half s-plane

But, there are a pair of imaginary roots

Handling the special cases - Remarks

One sign change, i.e. there is one root on the right half s-plane from this change

