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Root Locus Analysis - Summary
Rules for Constructing Root Loci

1. Locate the open loop poles and zeros
2. Determine the loci on the real axis
3. Determine the asymptotes of root loci
4. Find the breakaway and break-in points
5. Determine the angle of departure from

a complex pole
6. Determine the angle of arrival at a complex

zero
7. Find the point where the root loci may cross

the imaginary axis
8. Determine the shape of the root loci in the

broad neighborhood of the jw axis and the

origin of the s-plane
9. Determine the closed loop poles



Root Locus Analysis 
Pole-Zero Cancellation

Canceled pole of G(s) 
is kept as a CL pole!



Root Locus Analysis 
Pole-Zero Cancellation
An Example

(s+3) is common

(s+3) terms cancel

Char. Eqn.

Char. Eqn. for root
locus

 s><
-2-3 0

jw

o
-4

o
-1

Here is the
pole-zero
cancellation! 



Root Locus Analysis 
Pole-Zero Cancellation

Canceled pole is not a
closed loop pole at all



Root Locus Analysis 
Pole-Zero Cancellation
An Example (Same result is obtained!)

(s+3) is common

(s+3) terms cancel

Char. Eqn.

Char. Eqn. for root
locus

 s><
-2-3 0

jw

o
-4

o
-1

Here is the
pole-zero
cancellation! 



Root Locus Analysis 
Pole-Zero Cancellation

Canceled pole is a CL pole
Root locus does not notice it

Canceled pole is NOT a CL pole
Root locus does not notice it



P-5 Design based on Root Locus

The goal is to meet the design specifications,
and the way we followed so far has been to
modify the gain K. What if this is not sufficient?

Modify the system dynamics suitably to obtain
the desired result, which means compensation,
and the device you used is called compensator.



Design based on Root Locus
Description of the Compensation Problem

C(s) may remove some poles of G(s) and may
add new poles, or C(s) may remove some zeros
of G(s) and may add new zeros to change the
shape of root locus.

Once the shape of root locus becomes suitable
to locate the desired closed loop poles, the
adjustment of loop gain K is performed.



Design based on Root Locus
Effects of Addition of Poles



s
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< 
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jw


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jw

jw

s

s

Adding poles pulls the
root locus to the right

After some value of K, two
of the CL poles are unstable!



Design based on Root Locus
Effects of Addition of Zeros

<  > < s

< > < so 

> > < s o

jw

jw

jw

<> < so

jw

Adding zeros pulls the root locus to the left

Notice that, the CL poles are always stable for
this example. Adding zeros increase the stability
of the CL system, this is due to the anticipatory
behavior of the derivative action.



Design based on Root Locus
Lead Compensation

jw

s o
-p -z

Calculate the angle deficiency (f ) at given
locations, which are the desired CL pole
locations, and then locate p and z to provide
the -f to satisfy angle condition. Then
calculate K from the magnitude condition.



 
-2

0

jw

Design based on Root Locus
Lead Compensation - An Example

Desired CL 
poles

s

-2+j2 3
_

-2-j2 3
_

> <

If the compensator is a
simple gain, K, the CL
poles move on this
(red) locus, and do not
pass through the
desired locations...



Design based on Root Locus
Lead Compensation - An Example
Check Angle Condition

Compensator must provide 30 to satisfy the angle
condition. Remember the p & z configuration of the 
lead compensator.

 
-2 0

jw

s

-2+j2 3
_

q1

90

q2

120

Sf-Sq=-210

From zeros

(No zeros!)

From poles

(Two poles)

jw

s o
-p -z



Design based on Root Locus
Lead Compensation - An Example


0

jw

s

-2+j2 3
_

fz= qp+30
qp

o

Keeping this angle
at 30 will let us
meet the angle

condition

-p -z

Clearly, there are lots of configurations providing 30

angle contribution? Which one should we choose?



Design based on Root Locus
Lead Compensation - An Example
To obtain the best Kv


0

jw

s

-2+j2 3
_

fz= qp+3015
o

-p -z15

Bisect line

qp

p = 5.4

z = 2.9

60

60



Design based on Root Locus
Lead Compensation - An Example
Determine K from the Magnitude Condition

Uncompensated
Compensated



Design based on Root Locus
Lead Compensation - An Example
Static Velocity Error Constant

Input
Type

System
Type

We obtained 
the maximum 
possible Kv as 

the bisect line 
is chosen



Design based on Root Locus
Lead Compensation
More general case: You are specified Kv

Angle Condition Magnitude Condition

Solve the three equations for z, p and K



Design based on Root Locus
Lead Compensation - Remarks

You have been given the CL poles explicitly in
this example. In a more realistic problem,
several specifications imply them. For example,
the transient or steady state characteristics are
described and you find out the required CL
poles.

Before jumping into equations, roughly sketch
the root loci and make sure that you are on the
right way.



Design based on Root Locus
Lag Compensation

jw

so
-z -p

If the system performs well during transient
period but poor during steady state, use a lag
compensator to improve the steady state
characteristics. Lag compensator increases
the loop gain without modifying the locations
of the dominant CL poles significantly. This is
true as long as you locate p and z close to
each other, furthermore, both are located
close to origin.

>



Design based on Root Locus
Lag Compensation

Typically, a desired static error constant is
given. Since the angle contribution of the lag
compensator is very small, the root loci does
not change significantly. If this is not the
case, i.e. if transient response is not
satisfactory either, then you will be using a
lag-lead compensator, which will be
considered later...



Design based on Root Locus
Lag Compensation - An Example

 
-1

0

jw

s> <

CL poles are here, and we 
want to obtain Kv=5 sec-1

without changing their 
locations significantly. 
Design a lag compensator...

<
-2

j1.41



Design based on Root Locus
Lag Compensation - An Example

With this configuration,

The dominant CL poles are at
s=-0.3307  j0.5864

The damping ratio is z=0.491
The static velocity error constant is
Kv = 0.53 sec-1

We want Kv = 5 sec-1



Design based on Root Locus
Lag Compensation - An Example

Adopt this configuration,

>

Locate z and p very close to origin



Design based on Root Locus
Lag Compensation - An Example

• KvNEW/Kv10, so set z=0.05 and p=0.005
• Calculate angle contribution, which is 4°
• This will slightly change the root locus
• Tune K to keep z same (z=0.491), K=1.0235



Design, R-Locus
Lag Comp. Example

Zoom

• What would happen if there
were no K adjustment?

The answer is on the graph. 
Here you see two loci, which 
are almost identical. 
Nevertheless, you have to find 
the correct value of K…

Pay attention, the pole and 
the zero of C(s) are here

With C(s)

Without C(s)



Design based on Root Locus
Lag Compensation - An Example

Red: Command Signal, Blue: Compensated, Black: Uncompensated

This was what
we aimed.

Curve goes 
to 0.1

Speed of the 
response has 
decreased 
because of the 
lag 
compensation



Design based on Root Locus
Lag-Lead Compensation

Lead compensation speeds up the response and
increases the stability of the system.

Lag compensation improves the steady state
accuracy but reduces the speed of the response.

If the design specifications require both a fast
response and better steady state
characteristics, a Lag-Lead compensator is
used.



Design based on Root Locus
Lag-Lead Compensation

Calculate the  relevant variables (wn, z, wd etc)
Firstly, design the Lead Compensator

Calculate the angle deficiency
Locate the zero of the compensator
Locate the pole such that the angle
condition is met

Secondly, design the Lag Compensator
Locate its pole close to zero
According to steady state response specs.,
locate the zero
Check the angle contribution of Lag Comp.
If necessary, retune the gain so that z is
kept at its desired value. 



Design based on Root Locus
Lag-Lead Compensation - An Example

Design Specifications

• Dominant CL poles are desired
to have z = 0.5

• Desired Undamped natural frequency
is wn = 5 rad/sec

• Desired Static velocity error constant
is Kv = 80 sec-1



Design based on Root Locus
Lag-Lead Compensation - An Example
Step 1: Calculate the relevant variables
If there is no compensator, you have

Desired
z = 0.5

Desired
Kv = 80 sec-1

Desired
wn = 5 rad/sec



Design based on Root Locus
Lag-Lead Compensation - An Example
Step 2: Design the Lead Compensator

 
-0.5

0

jw

s

j4.3301

-2.5Now Calculate the
angle deficiency

Sf-Sq=-234.8

Lead Controller will contribute
54.8 to make sure that Sf-Sq=(2k+1)180

qp1
qp2



Design based on Root Locus
Lag-Lead Compensation - An Example
Step 2: Locate the zero of Lead Comp.
Let’s locate it at s=-1

 
-0.5

0

jw

s

j4.3301

-2.5
o

qzLead

109.11

-1



qpLead

54.31

-5.61

Now set the gain of the
Lead Compensator Klead

i.e. refer to magnitude
condition

qzLead-qpLead = 54.8



Design based on Root Locus
Lag-Lead Compensation - An Example
Step 3: Design the Lag Compensator

When s=0, the Lag compensator must
increase the loop gain by 1/0.124  8.06



Design based on Root Locus
Lag-Lead Compensation - An Example
Step 3: Locate the zero
of Lag Compensator
Let’s locate it at s=-0.1

Angle contribution is acceptably small. However, this 
has slightly changed z. A very tiny tuning can be made 
if the design specifications are too stringent. For this 
example, there is no need to do so, keep Klag=1.



Design based on Root Locus
Lag-Lead Compensation - An Example

Now, test and see whether the design
specifications are met or not...



Design based on Root Locus
Lag-Lead Compensation - An Example
Step and Ramp Responses

Uncompensated

Uncompensated



Klag = 1
Kv = 79.81139669944224 sec-1

z = 0.49452458450471
CL Poles: s=-2.44946613086810  j4.30511842727874

s=-1.12268288809756 and s=-0.10078485016624

Klag = 80/79.81139669944224=1.00236311239193
Kv = 80 sec-1

z = 0.49388974530242
CL Poles: s=-2.44966485404744  j4.31279190736033

s=-1.12228732098688 and s=-0.10078297091824

Klag = 0.97999709075950
Kv = 78.21493657490576 sec-1

z =0.50000000000001
CL Poles: s=-2.44773023820451  j4.23959313579281

s=-1.12613839738740 and s=-0.10080112620358 

Design based on Root Locus
Lag-Lead Compensation - An Example
A Comparison

Simple Klag

Good enough

Kv is exact

z is exact



Remarks on Root Locus and Design Based
on Root Locus

Manipulating the roots and the poles of the 
closed loop system may yield the desired 
solution, which can be sought by root locus 
method.

Stringent design specs. carry priority. Meeting 
them precisely may require computer based 
analysis and design.

It is useful to know the following Matlab 
functions: rlocus(.,.), rlocfind(.,.) and rltool. The 
last one lets you play with the poles and zeros 
to see their effects on responses and several 
other control engineering design tools.



Frequency Response Analysis
Bode Plots - First Order Factors
How to do with Matlab?

» numerator = [3];

» denominator = [1 2];

» w=logspace(-2,2,100); % 100 points btw. 10^-2 and 10^2

» bode(numerator,denominator,w)



Frequency Response Analysis
Bode Plots - First Order Factors
Input is sin(2pft) for f=0.01 Hz

0.1 Hz, 1 Hz, 10 Hz, 100 Hz

0.5000

0.4774

0.1517

0.0159

0.0016

10-3Hz 10-1Hz 101Hz

10-2Hz 100Hz 102Hz

0.5000
0.4774

0.1517

0.0159
0.0016

Time (sec)



» num = 1;

» den = [1  2];

» w = 2*pi*[0.01  0.1  1  10  100];

» [Magnitude,Phase]=bode(num,den,w);

» Magnitude'

ans =

0.4998    0.4770    0.1517    0.0159    0.0016

As the input frequency increases, the amplitude
of the sinusoidal signal at the output decreases.

0.5000 0.4774 0.1517 0.0159 0.0016

Frequency Response Analysis
Bode Plots - First Order Factors
Some Matlab Work

10-3Hz 10-1Hz 101Hz

10-2Hz 100Hz 102Hz

0.5000
0.4774

0.1517

0.0159
0.0016



Frequency Response Analysis
Bode Plots - First Order Factors - An Example



Frequency Response Analysis
Bode Plots - First Order Factors - An Example

o o x x
-20dB/dec 0dB/dec

20dB/dec

0dB/dec

-20dB/dec

x
Normally, we do 
not mark these 
poles and zeros!



Frequency Response Analysis
Bode Plots - First Order Factors

Set a starting frequency (w0), and calculate 
|G(jw)| at that frequency.

Then Sweep the frequency axis. If G(s) has n 
poles (zeros) at zero, start with a curve of 
slope -20n (20n) dB/decade.

Continue sweeping: At every pole (zero) 
decrease (increase) the slope 20m dB/decade, 
where m is the multiplicity of that pole (zero).



Frequency Response Analysis
Bode Plots - Quadratic Factors



Frequency Response Analysis
Bode Plots - Quadratic Factors

z>1 There are two real poles

z=1 There two real poles at s=-wn

z=0 Poles are on the imaginary axis

0<z<1 Several situations… We will see



Frequency Response Analysis
Bode Plots - Quadratic Factors
z>1: You have two real poles

0 dB

w = s1 w = s2

-20 dB/decade

-40 dB/decade



Frequency Response Analysis
Bode Plots - Quadratic Factors

z=1: You have two real poles at s=-wn

0 dB

w = wn

-40 dB/decade



Frequency Response Analysis
Bode Plots - Quadratic Factors
z=0: Poles are on the imaginary axis

0 dB



w = wn

-40 dB/decade



Frequency Response Analysis
Bode Plots - Quadratic Factors - 0<z<1

z=0.1
z=0.2
z=0.3
z=0.5
z=0.7
z=1.0

Resonant Frequency (wr)



Frequency Response Analysis
Bode Plots
Minimum-Phase Systems and
Nonminimum-Phase Systems

Transfer functions having neither poles nor 
zeros on the right half s-plane are 
minimum-phase systems.

Transfer functions having poles and/or 
zeros on the right half s-plane are 
nonminimum-phase systems.



Frequency Response Analysis
Minimum-Phase/Nonminimum-Phase Systems

2



Frequency Response Analysis
Minimum-Phase/Nonminimum-Phase Systems

z = 2, p = 1 z = 2, p = -1

z = -2, p = 1 z = -2, p = -1



Frequency Response Analysis
Transport Lag (Delay)



Frequency Response Analysis
Transport Lag - An Example



Frequency Response Analysis
Gain Margin and Phase Margin

G’(s)K

G(s)

When 1+KG’(jw)=0 holds true, the closed loop system is 
at the verge of instability.

At a frequency, say w1, G’(jw1) is a negative real number, i.e. 
G’(jw1)=180. Then w1 is called phase crossover frequency. 
The gain making 1+KgG’(jw1)=0 is the critical gain, which 
is the gain margin calculated as Kg=1/|G’(jw1)|



Frequency Response Analysis
Gain Margin and Phase Margin

Increasing the gain K
lifts up the

magnitude curve

Decreasing the gain K
lowers down the
magnitude curve

w

|G(jw)|

Clearly, if you change the gain K, the
phase curve of G(s) will not be affected.

G’(s)K

G(s)

For K=1
Mag. of G’



Frequency Response Analysis
Gain Margin and Phase Margin

Find the smallest frequency (the phase crossover 
frequency, w1) at which the phase angle of the 
open loop TF is -180. Note that the phase curve 
of G(s) is equal to that of G’(s) since K0.

|G'(jw)|
w

G'(jw) w

-180

0 dB

w1

= |G’(jw1)|



Find the smallest frequency (the gain crossover 
frequency, w2) at which the magnitude of the open 
loop TF is 0 dB.

Frequency Response Analysis
Gain Margin and Phase Margin

|G'(jw)|

w

G'(jw)

w

0 dB

w2

Phase 
Margin

-180



Frequency Response Analysis
Gain Margin and Phase Margin

|G'(jw)|
w

G'(jw)

w-180

0 dB
w1

Positive GM

Positive PM

w2

|G'(jw)|

w

G'(jw)
w

-180

0 dB
w1

Negative GM

Negative PM

w2

System is unstable!
You have to divide the current

loop gain at least by Kg

System is stable
You can multiply the current
loop gain at most by Kg

When you take the logarithm, your action will move
the magnitude curve upwards or downwards.



Frequency Response Analysis
Gain Margin and Phase Margin

Can I find the same upper limit of gain by using 
Routh criterion?

YES...

So, why don’t we use it?

Routh criterion does not tell anything about relative 
stability. The quantity 1+KG’(jw) for a fairly valid K 
may be very close to zero in magnitude! A tiny 
variation in G’(jw) might let you troubled then...

Is this the only way to study relative stability?

No. We will see Nyquist plots and draw the parallels 
between gain margin & phase margin and Nyquist 
curve.



Frequency Response Analysis
Gain Margin and Phase Margin
An Illustrative Example

num = [-1 3];

den = [1 3 2];

margin(num,den)



Frequency Response Analysis
Polar Plots - A Simple Example

s-plane

s

jw

s1

jw1

G’-plane

Re{G’}

Im{G’}

Re

Im



Frequency Response Analysis
Polar Plots - A Simple Example

s-plane

s

jw
G’-plane

What would you get if you choose all points on
the nonnegative part of the imaginary axis?

Im{G’}

Re{G’}



Frequency Response Analysis
Polar Plots and Margins - A Formal View

Re{G’}

Im{G’}

-1

1/GM

PM

Gain is unity,
i.e. 0dB

Phase angle is 180



Frequency Response Analysis
Polar Plots and Margins - A Formal View

There may be more 
than one phase or gain 
crossover frequencies. 
We will restrict 
ourselves to the cases 
illustrated here.

Re{G’}

Im{G’}

-1

1/GM

PM

A good discussion on these issues is presented in:
Hitay Özbay, Introduction to Feedback Control Theory, 
ISBN: 0-8493-1867-X (pp.85-100)
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-0.6

-0.4
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System: sys
Real: -0.75
Imag: -0.00343
Frequency (rad/sec): -0.0177

Nyquist Diagram
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An Example
Look at the relation with Routh Criterion

23

5.15.0
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2 ++
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=
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s
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)(1
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sKG

sKG
sT

+
=

1/Kg
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-0.6

-0.4
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0

0.2

0.4

0.6

0.8

1

System: sys
Real: -1
Imag: -0.00973
Frequency (rad/sec): -0.0149

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

Same Example                        with K=Kg=4/3



Frequency Response Analysis
Nyquist Stability Criterion

G(s)

H(s)

S
+
_R(s) Y(s) Y(s)

R(s)

G(s)

1+G(s)H(s)
T(s)= =

1+G(s)H(s)=0 is the characteristic equation. Nyquist 
stability criterion lets us know
The number of right half s-plane poles of T(s) by using
The number of right half s-plane poles of G(s)H(s) and
The number of clockwise encirclements of the point -1+j0 
made by the polar plot of G(jw)H(jw).
Let’s see the details...



Frequency Response Analysis
Nyquist Stability Criterion

Why are we interested in the point -1+j0 ?

Because the denominator of

is equal to zero when G(s)H(s)=-1=-1+j0.
Let s=jw, and obtain the polar plot of 
G(jw)H(jw) while running w from 0 to . 
Intuitively, we can say that the closed loop 
poles should somehow be related to the 
deployment of the geometric place of 
G(jw)H(jw) curve according to point -1+j0.

G(s)

1+G(s)H(s)
T(s)=



Frequency Response Analysis
Nyquist Stability Criterion

What is encirclement?

Re{GH}

Im{GH}

-1Re{GH}

Im{GH}

-1

No encirclement! No encirclement



Frequency Response Analysis
Nyquist Stability Criterion

What is encirclement?

Re{GH}

Im{GH}

-1Re{GH}

Im{GH}

-1

2 clockwise encirclements! 2 clockwise encirclements!

What is this part?



Let’s see the mapping between a special 
clockwise contour in s-plane and the curve 
it corresponds in G(jw)H(jw) plane.

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

Since the radius is , the 
interior of this closed 
contour contains every 
unstable zero or pole of the 
open loop transfer function 
G(s)H(s), and we can use 
the theorems of complex 
mathematics for our goals.



G(s)H(s)=1/(s+1), clearly 
G(jw)H(jw)=1/(jw+1)

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

Re

Im
s-plane GH-plane

0 1

Note that we have not told anything about stability yet! 
All we are doing now is to see the correspondence.



G(s)H(s)=1/(s-1), clearly 
G(jw)H(jw)=1/(jw-1)

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

Re

Im
s-plane GH-plane

0-1

Note that we have not told anything about stability yet! 
All we are doing now is to see the correspondence.



G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

You cannot choose this 
contour any more! The 
contour passes through a 
singularity (There is a 
pole at s=0).
Detour around it by 
adding a semicircle of 
infinitesimal radius e!



G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

Detour around it by 
adding a semicircle of 
infinitesimal radius e!

Let’s analyze what 
happens now...

Radius = e



G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

e
0

A B

C

D

E

F

CD s=jw

DEF s=le jq

FA s=jw

ABC s=e e jq

w:from e to l

q: from p/2 to -p/2

w:from -l to -e

q: from -p/2 to p/2

Note that l and e0



GH-plane

s

jw

l=

e
0

A: G(jw)H(jw)=-1+j

G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

Re

Im


0

-1

-j

js-plane

( )1

1

1

1

)1(

1

)1(
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+

+

-
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+

eee

ee
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GH-plane

s

jw

l=

e
0

G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

Re

Im


0

-1

-j

js-plane

( )1

1

1

1

)1(

1

)1(

1

22 +
-

+

-
=

+
=

+

eee

ee

j

jjss

C: G(jw)H(jw)=-1-j



B: G(jw)H(jw)= +j0

GH-plane

s

jw

l=

e
0

D: G(jw)H(jw)=0--j0-

C: G(jw)H(jw)=-1-j

A: G(jw)H(jw)=-1+j

F: G(jw)H(jw)= 0++j0+

E: G(jw)H(jw)=0

G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

Re

Im


0

-1

-j

js-plane



GH-plane

s

jw

l=

e
0

G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

Re

Im


0

-1

-j

js-plane

Infinity radius semicircle from the
s-plane is mapped to the origin of
GH-plane



s

jw

l=

e
0

G(s)H(s)=1/{s(s+1)}, clearly 
G(jw)H(jw)=1/{jw(jw+1)}

Frequency Response Analysis
Nyquist Stability Criterion

GH-plane

Re

Im


0

-1

-j

js-plane

Infinitesimal semicircle of radius e
from the s-plane is mapped as an
infinity radius semicircle in GH-plane



G(s)H(s)=1/{s(s2+4)}, clearly 
G(jw)H(jw)=1/{jw(-w2+4)}

Frequency Response Analysis
Nyquist Stability Criterion

s

jw

l=

e
0

j2 e

e-j2

Detour around every 
jw axis pole by 
adding a semicircle 
of infinitesimal 
radius e!

The rest is the 
same...

s=j2+e e jq

q : -p/2 to p/2

s=-j2+e e jq

q : -p/2 to p/2



Choose the clockwise contour in s-plane,
such that the right half s-plane is contained 
entirely.

Frequency Response Analysis
Nyquist Stability Criterion

Calculate G(jw)H(jw) along this contour.
Consider critical points first and choose 
some intermediate points. Use of a 
computer may be inevitable...

Construct the corresponding curve in GH-
plane. Pay attention to the rotation 
(clockwise or counterclockwise).

Now we are ready to give Nyquist Stability Criterion



Frequency Response Analysis
Nyquist Stability Criterion

G(s)

H(s)

S
+
_R(s) Y(s) Y(s)

R(s)

G(s)

1+G(s)H(s)
T(s)= =

1+G(s)H(s)=0 is the characteristic equation. Nyquist 
stability criterion lets us know
The number of right half s-plane poles of T(s) by using
The number of right half s-plane poles of G(s)H(s) and
The number of clockwise encirclements of the point -1+j0 
made by the polar plot of G(jw)H(jw).



Frequency Response Analysis
Nyquist Stability Criterion

G(s)

H(s)

S
+
_R(s) Y(s) Y(s)

R(s)

G(s)

1+G(s)H(s)
T(s)= =

1+G(s)H(s)=0 is the characteristic equation. Nyquist 
stability criterion lets us know
The number of right half s-plane poles of T(s)=Z
The number of right half s-plane poles of G(s)H(s)=P
The number of clockwise encirclements of the point -1+j0 
made by the polar plot of G(jw)H(jw)=N

Z=N+P
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G(s)

H(s)

S
+
_R(s) Y(s) Y(s)

R(s)

G(s)

1+G(s)H(s)
T(s)= =

Stable closed loop means Z=0. Obviously this means N=-P
The number of right half s-plane poles of G(s)H(s) must be 
equal to the number of counterclockwise encirclements of 
the point -1+j0. 

Z=N+P



Frequency Response Analysis
Nyquist Stability Criterion
Example-I

G(s)H(s)=K/s2, clearly 
G(jw)H(jw)=-K/w2

1+G(s)H(s)= {s2+K}/s2

GH-plane

s

jw

l=

e
0

Re

Im


0

-1

-j

s-plane

-j

Locus passes through -1+j0 point, i.e. the closed loop 
poles are located on the jw axis, s2+K=0 !



Frequency Response Analysis
Nyquist Stability Criterion
Example-II

G(s)H(s)=K/s(s-1), clearly P=1

s

jw

l=

e
0

s-plane

No matter what K is, locus encircles -1+j0 point one 
times in the clockwise direction, so N=1

GH-plane

Re

Im


0

-K

-j

j



Frequency Response Analysis
Nyquist Stability Criterion
Example-II

G(s)H(s)=K/s(s-1), P=1, N=1

Z=N+P =1+1=2
This result tells us that 2 of the closed 
loop poles lie on the right half s-plane.

1+G(s)H(s)= =0

Zeros of the char. eqn. Have real parts 
equal to 1/2, i.e. on the right half s-plane.

You could check the CL stability by using 
the Routh test as well. See the root locus..

s2-s+K

s(s-1)



Frequency Response Analysis
Nyquist Stability Criterion

If we can use Routh test, why should we 
use Nyquist stability criterion, which is 
more time-consuming?

Sometimes, you have only the frequency 
response data of G(s) and/or H(s), which 
may contain transducers, measurement 
devices etc. In such cases, Nyquist 
stability criterion gives a good idea about 
closed loop stability. Also, the use of 
Nyquist plots let us see the relative 
stability properties of the system at hand.



Frequency Response Analysis
Nyquist Stability Criterion

What if we have a time delay terms in the 
open loop transfer function?

Use the following series expansion,
and truncate.

How reliable is this?



Frequency Response Analysis
Nyquist Stability Criterion

#of unstable
Open Loop 

Poles

#of Clockwise
Encirclements of 

-1+j0 (P)

$of Unstable
Closed Loop 

poles N=Z+P

Feedback 
System is

Stable/Unstable

#of Clockwise
Encirclements 
of -1+j0 (-P)

2 -2 0 Stable 2

0 3 3 Unstable -3

5 -5 0 Stable 5

0 0 0 Stable 0

1 -1 0 Stable 1

100 -100 0 Stable 100

0 4 4 Unstable -4



Nyquist Curve is a Conformal Map

Conformal map is an angle preserving map.

a
s

jw

s0

jw0

Ks0

jKw0 Re(G)

Im(G)



Information on Nyquist Plot
Frequency Response of the Closed Loop

-1

G(jw0)

|G(jw0)|
|1+G(jw0)|

Re(G)

Im(G)



Information on Nyquist Plot
Effect of Delay

Re(G)

Im(G)

-1

A

B

G(jw)

exp(-tjw)G(jw)

w0t

w0



Information on Nyquist Plot
Amplification and Attenuation

Re(G)

Im(G)

-1

|1+G(jw0)|

|1+G(jw1)|

Amplification

Attenuation


