CONTROL SYSTEMS

Doç. Dr. Murat Efe

WEEK 12

Root Locus Analysis - Summary Rules for Constructing Root Loci

1. Locate the open loop poles and zeros
2. Determine the loci on the real axis
3. Determine the asymptotes of root loci
4. Find the breakaway and break-in points
5. Determine the angle of departure from
a complex pole
6. Determine the angle of arrival at a complex zero
7. Find the point where the root loci may cross the imaginary axis
8. Determine the shape of the root loci in the broad neighborhood of the j ω axis and/the origin of the s-plane
9. Determine the closed loop poles

Root Locus Analysis

 Pole-Zero Cancellation

$$
G(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \text { and } H(s)=\frac{A(s)}{B(s)}=\frac{A^{\prime}(s)(s+\alpha)}{B(s)}
$$

$$
T(s)=\frac{G(s)}{1+G(s) H(s)}=\frac{\frac{N(s)}{D^{\prime}(s)(s+\alpha)}}{1+\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \frac{A^{\prime}(s)(s+\alpha)}{B(s)}}
$$

$$
=\frac{\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \frac{B(s)}{B(s)}}{\frac{D^{\prime}(s) B(s)+N(s) A^{\prime}(s)}{D^{\prime}(s) B(s)}}=\frac{\frac{N(s) B(s)}{D^{\prime}(s) B(s)}}{\frac{D^{\prime}(s) B(s)+N(s) A^{\prime}(s)}{D^{\prime}(s) B(s)}} \frac{1}{(s+\alpha)}
$$

$$
=\frac{N(s) B(s)}{D^{\prime}(s) B(s)+N(s) A^{\prime}(s)} \frac{1}{(s+\alpha)}, \begin{aligned}
& \text { Canceled pole of } \mathbf{G}(\mathbf{s}) \\
& \text { is kept as a CL pole! }
\end{aligned}
$$

Root Locus Analysis Pole-Zero Cancellation

An Example

$G(s)=\frac{s+1}{(s+2)(s+3)}$, and $H(s)=K \frac{s+3}{s+4} \Rightarrow(s+3)$ is common
$1+K G(s) H(s)=1+\frac{K(s+1)}{(s+2)(s+4)}\left(\frac{s+3}{s+3}\right) \Rightarrow(s+3)$ terms cancel
$((s+2)(s+4)+K(s+1))(s+3)=0$
\Rightarrow Char. Eqn.
$((s+2)(s+4)+K(s+1))=0$
Here is the pole-zero cancellation!

Char. Eqn. for root locus

Root Locus Analysis Pole-Zero Cancellation

$$
\begin{aligned}
& G(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \text { and } H(s)=\frac{A(s)}{B(s)}=\frac{A^{\prime}(s)(s+\alpha)}{B(s)} \\
& T(s)=\frac{G(s) H(s)}{1+G(s) H(s)}=\frac{\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \frac{A^{\prime}(s)(s+\alpha)}{B(s)}}{1+\frac{N(s)}{D^{\prime}(s)(s+\alpha)} \frac{A^{\prime}(s)(s+\alpha)}{B(s)}} \\
& \quad \begin{array}{l}
\quad \text { canceled pole is not a } \\
\text { closed loop pole at all }
\end{array} \\
&=\frac{\frac{N(s) A^{\prime}(s)}{D^{\prime}(s) B(s)}}{\frac{N(s) A^{\prime}(s)}{D^{\prime}(s) B(s)+N(s) A^{\prime}(s)}}=\frac{D^{\prime}}{D^{\prime}(s) B(s)}
\end{aligned}
$$

Root Locus Analysis Pole-Zero Cancellation

An Example (Same result is obtained!)

Root Locus Analysis Pole-Zero Cancellation

Canceled pole is a CL pole Root locus does not notice it

Canceled pole is NOT a CL pole Root locus does not notice it

园 The goal is to meet the design specifications, and the way we followed so far has been to modify the gain K . What if this is not sufficient?

Q Modify the system dynamics suitably to obtain the desired result, which means compensation, and the device you used is called compensator.

Design based on Root Locus Description of the Compensation Problem

: C(s) may remove some poles of G(s) and may add new poles, or C(s) may remove some zeros of $\mathrm{G}(\mathrm{s})$ and may add new zeros to change the shape of root locus.
Once the shape of root locus becomes suitab, to locate the desired closed loop poles, the adjustment of loop gain K is performed.

Design based on Root Locus Effects of Addition of Poles

Adding poles pulls the root locus to the right

ψ After some value of K_{1} of the CL poles are unstable!

Design based on Root Locus Effects of Addition of Zeros

Adding zeros pulls the root locus to the left
Notice that, the CL poles are always stablefor this example. Adding zeros increase the stability of the CL system, this is due to the anticipatory behavior of the derivative action.

Design based on Root Locus Lead Compensation

$$
C(s)=K \frac{s+z}{s+p}, z<p
$$

Calculate the angle deficiency (ϕ) at given locations, which are the desired CL pole locations, and then locate p and z to provide the $-\phi$ to satisfy angle condition. Then calculate K from the magnitude condition.

Design based on Root Locus Lead Compensation - An Example

Design based on Root Locus Lead Compensation - An Example Check Angle Condition

Compensator must provide 30° to satisfy the angle condition. Remember the p \& z configuration of the lead compensator:

Design based on Root Locus Lead Compensation - An Example

Keeping this angle at 30° will let us meet the angle condition

Clearly, there are lots of configurations providing angle contribution? Which one should we choos,

Design based on Root Locus Lead Compensation - An Example

 To obtain the best K_{v}

Design based on Root Locus Lead Compensation - An Example Determine K from the Magnitude Condition

$$
\begin{array}{|l|}
|C(s) G(s)|_{s=-2 \pm j 2 \sqrt{3}}=1 \\
\left|K \frac{s+2.9}{s+5.4} \frac{4}{s(s+2)}\right|_{s=-2+j 2 \sqrt{3}} \\
K=1.7, C(s)=4.7 \frac{s+2.9}{s+5.4}
\end{array}
$$

Design based on Root Locus Lead Compensation - An Example Static Velocity Error Constant

	Step Input $r(t)=1$	Ramp Input $r(t)=t$	Acceleration Input $r(t)=t^{2} / 2$
Type 1	0	$e_{s s}=\frac{1}{K_{v}}$	∞
$K_{v}=\lim _{s \rightarrow 0} s C(s) G(s)$			
$=\lim _{s \rightarrow 0} s\left(4.7 \frac{s+2.9}{s+5.4}\right)\left(\frac{4}{s(s+2)}\right)$			$\begin{aligned} & \text { We obtained } \\ & \text { the maximum } \end{aligned}$
$=5.02 \mathrm{sec}^{-1}$			poscibe K, as
			the brect ine is chosen

Design based on Root Locus Lead Compensation More general case: You are specified K_{v}

$$
K_{v}=\lim _{s \rightarrow 0} s C(s) G(s)=\lim _{s \rightarrow 0} s\left(K \frac{s+z}{s+p}\right)\left(\frac{4}{s(s+2)}\right)=\frac{2 K z}{p}
$$

$$
\phi_{z}-\theta_{p}=30^{\circ}=\arctan \left(\frac{2 \sqrt{3}}{z-2}\right)-\arctan \left(\frac{2 \sqrt{3}}{p-2}\right)
$$

$$
\left|K \frac{s+z}{s+p} \frac{4}{s(s+2)}\right|_{s=-2+j 2 \sqrt{3}}=1 \Rightarrow K=2 \sqrt{3} \sqrt{\frac{(p-2)^{2}+12}{(z-2)^{2}+12}}
$$

Angle Condition

Solve the three equations for $z_{1} p$ and K

Design based on Root Locus
 Lead Compensation - Remarks

Y You have been given the CL poles explicitly in this example. In a more realistic problem, several specifications imply them. For example, the transient or steady state characteristics are described and you find out the required CL poles.

图 Before jumping into equations, roughly sketch the root loci and make sure that you are on the right way.

Design based on Root Locus Lag Compensation

$$
C(s)=K \frac{s+z}{s+p}, z>p
$$

If the system performs well during transient period but poor during steady state, use a lag compensator to improve the steady state characteristics. Lag compensator increases the loop gain without modifying the locations of the dominant CL poles significantly. This/is true as long as you locate p and z close to each other, furthermore, both are located close to origin.

Design based on Root Locus Lag Compensation

Typically, a desired static error constant is given. Since the angle contribution of the lag compensator is very small, the root loci does not change significantly. If this is not the case, i.e. if transient response is not satisfactory either, then you will be using a lag-lead compensator, which will be considered later...

Design based on Root Locus Lag Compensation - An Example

Design based on Root Locus Lag Compensation - An Example

With this configuration,

The dominant CL poles are at $\mathbf{s}=-0.3307 \pm j 0.5864$

The damping ratio is $\zeta=0.491$
The static velocity error constant is $K_{\nu}=0.53 \mathrm{sec}^{-1}$

* We want $K_{v}=5 \mathrm{sec}^{-1}$

Design based on Root Locus Lag Compensation - An Example

Adopt this configuration,

Locate z and p very close to origin

$$
C(s)=K \frac{s+z}{s+p}, z>p
$$

Design based on Root Locus Lag Compensation - An Example

$$
\begin{aligned}
& G(s)=\frac{1.06}{s(s+1)(s+2)} \quad K_{v}=\lim _{s \rightarrow 0} s G(s)=0.53 \\
& C(s) G(s)=K \frac{s+z}{s+p} \frac{1.06}{s(s+1)(s+2)} \\
& K_{v \mathrm{NEW}}=\lim _{s \rightarrow 0} s C(s) G(s)=K \frac{z}{p} 0.53
\end{aligned}
$$

- $K_{\mathrm{vNEw}} / \mathrm{K}_{\mathrm{v}} \cong 10$, so set $\mathrm{z}=0.05$ and $\mathrm{p}=0.005$
- Calculate angle contribution, which is
- This will slightly change the root locus
- Tune K to keep ζ same ($\zeta=0.491$) $\mathrm{K}=1.0235$

Design, R-Locus Lag Comp. Example

- What would happen if there were no K adjustment?

The answer is on the graph. Here you see two loci, which are almost identical. Nevertheless, you have to find the correct value of K...

Pay attention, the pole and the zero of $\mathrm{C}(\mathrm{s})$ are here

Design based on Root Locus Lag Compensation - An Example

Red: Command Signal, Blue: Compensated, Black: Uncompensated

This was what we aimed. Curve goes to 0.1

Design based on Root Locus Lag-Lead Compensation

Lead compensation speeds up the response and increases the stability of the system.

- Lag compensation improves the steady state accuracy but reduces the speed of the response.

准 If the design specifications require both a fast response and better steady state characteristics, a Lag-Lead compensator used.

Design based on Root Locus Lag-Lead Compensation

- Calculate the relevant variables $\left(\omega_{n} \zeta_{r} \omega_{d}\right.$ etc)
- Firstly, design the Lead Compensator
- Calculate the angle deficiency
- Locate the zero of the compensator
o Locate the pole such that the angle condition is met
- Secondly, design the Lag Compensator

O Locate its pole close to zero
O According to steady state response specs., locate the zero
o Check the angle contribution of Lag Conp.
O If necessary, retune the gain so that $/ 5$ is kept at its desired value.

Design based on Root Locus
 Lag-Lead Compensation - An Example

$$
G(s)=\frac{4}{s(s+0.5)}
$$

Design Specifications

- Dominant CL poles are desired to have $\zeta=0.5$
- Desired Undamped natural frequency is $\omega_{\mathrm{n}}=5 \mathrm{rad} / \mathrm{sec}$
- Desired Static velocity error constant is $\mathrm{K}_{\mathrm{v}}=80 \mathrm{sec}^{-1}$

Design based on Root Locus

Lag-Lead Compensation - An Example Step 1: Calculate the relevant variables If there is no compensator, you have

Desired $\zeta=0.5$

$$
G(s)=\frac{4}{s(s+0.5)}
$$

$$
T(s)=\frac{G(s)}{1+G(s)}=\frac{4}{s^{2}+0.5 s+4}
$$

Desired $\mathrm{K}_{\mathrm{v}}=80 \mathrm{sec}^{-1}$

$$
\left\{\begin{array}{l}
\zeta=0.125 \text { and } \omega_{n}=2 \mathrm{rac} \\
K_{v}=\lim _{s \rightarrow 0} s G(s)=8 \mathrm{sec}^{-1}
\end{array}\right.
$$

$\omega_{\mathrm{n}}=5 \mathrm{rad} / \mathrm{sec}$

Design based on Root Locus
 Lag-Lead Compensation - An Example Step 2: Design the Lead Compensator

$$
\begin{aligned}
& -\zeta \omega_{n}=-0.5 * 5=-2.5 \\
& j \omega_{d}=j \sqrt{1-\zeta^{2}} \omega_{n}=j 4.3301 \\
& s_{1,2}=-\zeta \omega_{n} \pm j \omega_{d}=-2.5 \pm j 4.3301
\end{aligned}
$$

Now Calculate the angle deficiency
$\Sigma \phi-\Sigma \theta=-234.8^{\circ}$
Lead Controller will contribute
54.8° to make sure that $\Sigma \phi-\Sigma \theta= \pm(2 k+1) 180^{\circ}$

Design based on Root Locus
 Lag-Lead Compensation - An Example Step 2: Locate the zero of Lead Comp. Let's locate it at $\mathbf{s = - 1}$

Design based on Root Locus
 Lag-Lead Compensation - An Example Step 3: Design the Lag Compensator

$$
C_{\text {lead }}(s) G(s)=\left(6.94 \frac{s+1}{s+5.61}\right)\left(\frac{4}{s(s+0.5)}\right)
$$

$$
\begin{aligned}
& K_{v(\text { new })}=\lim _{s \rightarrow 0} s C_{\text {lead }}(s) G(s)=9.9 \mathrm{sec}^{-1} \\
& \frac{K_{v(\text { new })}}{K_{v(\text { desired })}}=\frac{9.9 \mathrm{sec}^{-1}}{80 \mathrm{sec}^{-1}}=0.124
\end{aligned}
$$

When $\mathrm{s}=0$, the Lag compensator must increase the loop gain by $1 / 0.124 \approx 8.06$

Design based on Root Locus
 Lag-Lead Compensation - An Example Step 3: Locate the zero of Lag Compensator Let's locate it at s=-0.1
 $$
C_{\text {lag }}(s)=K_{\text {lag }} \frac{s+0.1}{s+0.0124}
$$

$C_{\text {lead }}(s) C_{\text {lag }}(s) G(s)=\left(6.94 \frac{s+1}{s+5.61}\right)\left(K_{\text {lag }} \frac{s+0.1}{s+0.0124}\right)\left(\frac{4}{s(s+0.5)}\right)$
$K_{v}=\lim _{s \rightarrow 0} s C_{\text {lead }}(s) C_{\text {lag }}(s) G(s)=K_{\text {lag }} 79.8114 \mathrm{sec}^{-1}$
Angle Contribution is : 0.8791°
Angle contribution is acceptably small. However, this has slightly changed z. A very tiny tuning can be made if the design specifications are too stringent. For this example, there is no need to do so, keep $\mathrm{K}_{\mathrm{lag}}=1$.

Design based on Root Locus Lag-Lead Compensation - An Example

$$
G(s)=\frac{4}{s(s+0.5)}
$$

$$
C(s)=6.94 \frac{(s+1)(s+0.1)}{(s+5.61)(s+0.0124)}
$$

Now, test and see whether the design specifications are met or not...

Design based on Root Locus Lag-Lead Compensation - An Example Step and Ramp Responses

Design based on Root Locus
 Lag-Lead Compensation - An Example
 A Comparison

Simple Klag$K_{\text {lag }}=1$ $K_{v}=79.81139669944224 ~ \mathrm{sec}^{-1}$ $\zeta=0.49452458450471$ Good enough Poles: $\mathrm{s}=-2.44946613086810 \pm j 4.30511842727874$ $\mathrm{~S}=-1,12268288809756$ and $\mathrm{s}=-0.10078485016624$

K_{v} is exact

```
K
Kv = 80 sec-1
\zeta=0.49388974530242
```

CL Poles: s=-2.44966485404744 $\pm j 4.3127919073603$ $\mathrm{s}=-1.12228732098688$ and $\mathrm{s}=-\mathbf{0 . 1 0 0 7 8 2 9 7 0 9 1 8 2 4}$
$\mathrm{K}_{\text {lag }}=0.97999709075950$
$K v=78.21493657490576 \mathrm{sec}^{-1}$
$\zeta=0.50000000000001$
CL Poles: s=-2.44773023820451 $\pm j 4.23959313579281$ $\mathrm{s}=-1.12613839738740$ and $\mathrm{s}=-0.10080112620358$

Remarks on Root Locus and Design Based on Root Locus

国 Manipulating the roots and the poles of the closed loop system may yield the desired solution, which can be sought by root locus method.

Stringent design specs. carry priority. Meeting them precisely may require computer based analysis and design.

園 It is useful to know the following Matlab functions: and last one lets you play with the poles and zero's to see their effects on responses and several other control engineering design too/s.

Frequency Response Analysis

 Bode Plots - First Order Factors How to do with Matlab?» numerator $=[3]$;

» denominator $=\left[\begin{array}{ll}1 & 2\end{array}\right]$;
» w=logspace(-2,2,100); \% 100 points btw. $10^{\wedge}-2$ and $10^{\wedge} 2$
» bode(numerator,denominator,w)

Frequency Response Analysis Bode Plots - First Order Factors

$$
G(s)=\frac{1}{s+2}
$$

Input is $\sin (2 \pi f t)$ for $f=0.01 \mathrm{~Hz}$
$0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}$

Frequency Response Analysis Bode Plots - First Order Factors
 $$
G(s)=\frac{1}{s+2}
$$

 Some Matlab Work$$
\begin{aligned}
& \text { » num }=1 ; \\
& \text { » den }=\left[\begin{array}{ll}
1 & 2
\end{array}\right] ; \\
& >\text { w }=2^{*} \mathrm{pi} \mathrm{i}^{*}\left[\begin{array}{lllll}
0.01 & 0.1 & 1 & 10 & 100
\end{array}\right] ; \\
& \text { » }\left[\begin{array}{lll}
\text { Magnitude,Phase }
\end{array}\right]=\text { bode(num,den,w); } \\
& \text { » Magnitude' }
\end{aligned}
$$

ans $=$

0.4998	0.4770	0.1517	0.0159	0.0016
0.5000		0.1517	0.0159	0.0016

As the input frequency increases, the amplitude of the sinusoidal signal at the output decreases.

Frequency Response Analysis

Bode Plots - First Order Factors - An Example

$$
\begin{aligned}
& G(s)=\frac{16(s+2)(s+10)}{s(s+40)(s+100)}=K \frac{(s / 2+1)(s / 10+1)}{s(s / 40+1)(s / 100+1)} \\
& G(s)=0.08 \frac{(1+0.5 s)(1+0.1 s)}{s(1+0.025 s)(1+0.01 s)} \\
& G(j \omega)=0.08 \frac{(1+j 0.5 \omega)(1+j 0.1 \omega)}{j \omega(1+j 0.025 \omega)(1+j 0.01 \omega)} \\
& |G(j \omega)|=0.08 \frac{|1+j 0.5 \omega \||1+j 0.1 \omega|}{|j \omega\|1+j 0.025 \omega\| 1+j 0.01 \omega|} \\
& \angle G(j \omega)=\arctan (0.5 \omega)+\arctan (0.1 \omega)-90^{\circ} \\
& \\
& \quad-\arctan (0.025 \omega)-\arctan (0.01 \omega)
\end{aligned}
$$

Frequency Response Analysis Bode Plots - First Order Factors - An Example

Frequency Response Analysis Bode Plots - First Order Factors

Set a starting frequency (W_{0}), and calculate |G(jw)| at that frequency.

国 Then Sweep the frequency axis. If $\mathrm{G}(\mathrm{s})$ has n poles (zeros) at zero, start with a curve of slope $-20 n(20 n) d B / d e c a d e$.

葍 Continue sweeping: At every pole (zero) decrease (increase) the slope $20 \mathrm{~m} \mathrm{~dB} /$ decad -1 , where m is the multiplicity of that pole (zero).

Frequency Response Analysis Bode Plots - Quadratic Factors

$$
\begin{aligned}
& G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{1}{\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1} \\
& G(j \omega)=\frac{1}{1+2 \zeta\left(j j \frac{\omega}{\omega_{n}}\right)+\left(j \frac{\omega}{\omega_{n}}\right)^{2}}=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)+2 \zeta\left(j j \frac{\omega}{\omega_{n}}\right)} \\
& 20 \log |G(j \omega)|=-20 \log \left(\sqrt{\left(1-\frac{\omega^{2}}{\omega_{n}^{2}}\right)^{2}+\left(2 \zeta \frac{\omega}{\omega_{n}}\right)^{2}}\right) \\
& \angle G(j \omega)=-\arctan \left(\frac{2 \zeta \frac{\omega}{\omega_{n}}}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right)
\end{aligned}
$$

Frequency Response Analysis Bode Plots－Quadratic Factors

夌 $\zeta>1$
園 $\zeta=1$
圄 $\zeta=0$
国 $0<\zeta<1$

There are two real poles
There two real poles at $s=-w_{n}$
Poles are on the imaginary axis
Several situations．．．We will see

Frequency Response Analysis Bode Plots - Quadratic Factors $\zeta>1$: You have two real poles

Frequency Response Analysis Bode Plots - Quadratic Factors

$\zeta=1$: You have two real poles at $s=-\omega_{\mathrm{n}}$

$$
\begin{aligned}
& G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{\left(s+\omega_{n}\right)^{2}} \\
& G(j \omega)=\frac{1}{\left(j \frac{\omega}{\omega_{n}}+1\right)^{2}}
\end{aligned}
$$

Frequency Response Analysis Bode Plots - Quadratic Factors $\zeta=0$: Poles are on the imaginary axis

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+\omega_{n}^{2}} \quad|G(j \omega)|=\frac{1}{\left|1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right|}
$$

Frequency Response Analysis
 Bode Plots - Quadratic Factors - $\mathbf{0}<\zeta<1$

$\omega_{r}=\omega_{n} \sqrt{1-2 \zeta^{2}}$ for $0 \leq \zeta \leq 1 / \sqrt{2}$
If $\zeta>1 / \sqrt{2}$ There is no resonant peak

Frequency Response Analysis Bode Plots
Minimum-Phase Systems and Nonminimum-Phase Systems

圆 Transfer functions having neither poles nor zeros on the right half s-plane are minimum-phase systems.

Transfer functions having poles and/or zeros on the right half s-plane are nonminimum-phase systems.

Frequency Response Analysis Minimum-Phase/Nonminimum-Phase Systems

\[

\]

Frequency Response Analysis Minimum-Phase/Nonminimum-Phase Systems

Frequency Response Analysis Transport Lag (Delay)

$$
\begin{aligned}
& G(s)=e^{-s T} \\
& G(j \omega)=e^{-j \omega T}=\cos (\omega T)-j \sin (\omega T) \\
& G(j \omega)=1 \\
& \angle G(j \omega)=-\omega T \text { (radians) or }-\frac{180}{\pi} \omega T \text { (degrees) }
\end{aligned}
$$

Frequency Response Analysis Transport Lag - An Example

$$
\begin{aligned}
& G(j \omega)=\frac{e^{-j \omega L}}{1+j \omega T} \\
& \begin{aligned}
20 \log |G(j \omega)| & =20 \log \left|e^{-j \omega L}\right|-20 \log |1+j \omega T| \\
& =-20 \log |1+j \omega T|
\end{aligned} \\
& \angle G(j \omega)=-\omega L-\arctan (\omega T)
\end{aligned}
$$

Frequency Response Analysis Gain Margin and Phase Margin

$$
\begin{aligned}
& T(s)=\frac{G(s)}{1+G(s)}=\frac{K G^{\prime}(s)}{1+K G^{\prime}(s)} \\
& T(j \omega)=\frac{G(j \omega)}{1+G(j \omega)}=\frac{K G^{\prime}(j \omega)}{1+K G^{\prime}(j \omega)}
\end{aligned}
$$

When $1+\mathrm{KG}^{\prime}(\mathrm{jw})=\mathbf{0}$ holds true, the closed loop system is at the verge of instability.
園 At a frequency, say $w_{1}, G^{\prime}\left(j w_{1}\right)$ is a negative real numbe $\angle \mathrm{G}^{\prime}\left(j \mathrm{w}_{1}\right)=180^{\circ}$. Then w_{1} is called phase crossover freguency. The gain making $1+\mathrm{K}_{\mathrm{g}} \mathrm{G}^{\prime}\left(\mathrm{jw}_{1}\right)=0$ is the critical gain, which is the gain margin calculated as $\mathrm{K}_{\mathrm{g}}=1 /\left|\mathrm{G}^{\prime}(\mathrm{j} w / 1)\right|$

Frequency Response Analysis Gain Margin and Phase Margin

$G(s)$

Increasing the gain K

Decreasing the gain K lowers down the magnitude curve

$$
\begin{aligned}
& \text { lifts up the } \\
& \text { magnitude curve }
\end{aligned}
$$

|a

Clearly, if you change the gain K, the phase curve of $\mathrm{G}(\mathrm{s})$ will not be affected.

Frequency Response Analysis Gain Margin and Phase Margin

图 Find the smallest frequency (the phase crossover frequency, ω_{1}) at which the phase angle of the open loop TF is -180°. Note that the phase curve of $\mathrm{G}(\mathrm{s})$ is equal to that of $\mathrm{G}^{\prime}(\mathrm{s})$ since $\mathrm{K} \geq 0$.

Frequency Response Analysis Gain Margin and Phase Margin

国 Find the smallest frequency (the gain crossover frequency, ω_{2}) at which the magnitude of the open loop TF is 0 dB .

Frequency Response Analysis Gain Margin and Phase Margin

System is stable You can multiply the current loop gain at most by K_{g}

System is unstable! You have to divide the current loop gain at'east by K_{g} When you take the logarithm, your action will move the magntitude curve plepards or downwards.

Frequency Response Analysis Gain Margin and Phase Margin
国 Can I find the same upper limit of gain by using Routh criterion?
YES...
園 So, why don't we use it?
Routh criterion does not tell anything about relative stability. The quantity $1+\mathrm{KG}^{\prime}(\mathrm{jw})$ for a fairly valid K may be very close to zero in magnitude! A tiny variation in G^{\prime} (jw) might let you troubled then..
Is this the only way to study relative stability
No. We will see Nyquist plots and draw the parallels between gain margin \& phase margin and Nyquist

Frequency Response Analysis Gain Margin and Phase Margin An Illustrative Example

Frequency Response Analysis Polar Plots - A Simple Example

Frequency Response Analysis Polar Plots - A Simple Example

Frequency Response Analysis Polar Plots and Margins - A Formal View

Frequency Response Analysis Polar Plots and Margins - A Formal View

There may be more than one phase or gain crossover frequencies. We will restrict ourselves to the cases illustrated here.

Nyquist Diagram

Frequency Response Analysis Nyquist Stability Criterion

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
$$

$1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$ is the characteristic equation. Nyquist stability criterion lets us know
The number of right half s-plane poles of $\mathrm{T}(\mathrm{s})$ by using The number of right half s-plane poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ and The number of clockwise encirclements of the point $-1,+\mathrm{jo}$ made by the polar plot of $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw})$.
Let's see the details...

Frequency Response Analysis Nyquist Stability Criterion

摂 Why are we interested in the point $-1+j 0$?
Because the denominator of

$$
\mathrm{T}(\mathrm{~s})=\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})}
$$

is equal to zero when $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=-\mathbf{1}=-\mathbf{1}+\mathrm{j} 0$. Let $\mathrm{s}=\mathrm{jw}$, and obtain the polar plot of $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw}$) while running w from 0 to ∞. Intuitively, we can say that the closed loop poles should somehow be related to the deployment of the geometric place of $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw})$ curve according to point $-1+\mathrm{j} 0$.

Frequency Response Analysis Nyquist Stability Criterion

What is encirclement?

jo erncijcternenit

Frequency Response Analysis Nyquist Stability Criterion

What is encirclement?

What is this part?

Frequency Response Analysis Nyquist Stability Criterion

摂 Let's see the mapping between a special clockwise contour in s-plane and the curve it corresponds in G(jw)H(jw) plane.

Since the radius is ∞, the interior of this closed contour contains every unstable zero or pole of the open loop transfer function $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$, and we can use the theorems of complex mathematics for our goals.

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /(\mathrm{s}+1)$, clearly G(jw)H(jw)=1/(jw+1)

Note that we have not told anything about stability yet! $A \cdot \|$ we are dojng now is to see the correspondence.

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /(\mathrm{s}-1)$, clearly G(jw)H(jw)=1/(jw-1)

Note that we have not told anything about stability yet $A \cdot A$ we are doing now is to see the correspondence.

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}

You cannot choose this contour any more! The contour passes through a singularity (There is a pole at $s=0$).
Detour around it by
addling a semicircle of infinitesinsal raclilis e!

Frequency Response Analysis Nyquist Stability Criterion

㵀 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}

Detour around it by adding a semicircle of infinitesimal radius ε !

Let's analyze what happens nown

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}

Note that $l \rightarrow \infty$ and $\varepsilon \rightarrow 0$

$C D$	$s=j w$	$w:$ from ε to l
$D E F$	$s=l e^{j \theta}$	θ, from $\pi / 2$ to $-\pi / 2$
$F A$	$s=j w$	$w:$ from $-l$ to $-\varepsilon /$
$A B C$	$s=\varepsilon e^{j \theta}$	θ, from $-\pi / / 2$
to $\pi / 2$		

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}
$\frac{1}{s(s+1)}=\frac{1}{-j \varepsilon(-j \varepsilon+1)}$
$=\frac{-1}{\varepsilon^{2}+1}+j \frac{1}{\varepsilon\left(\varepsilon^{2}+1\right)}$

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}

Frequency Response Analysis Nyquist Stability Criterion

㵀 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}
Infinity radius semicircle from the s-plane is mapped to the origin of GH-plane

Frequency Response Analysis Nyquist Stability Criterion

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\{\mathrm{s}(\mathrm{s}+1)\}$, clearly G(jw)H(jw)=1/\{jw(jw+1)\}
 from the s-plane is mapped as an infinity radius semicircle in GH-plane

Frequency Response Analysis Nyquist Stability Criterion

(\% $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=1 /\left\{\mathrm{s}\left(\mathrm{s}^{2}+4\right)\right\}$, clearly $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw})=1 /\left\{j w\left(-w^{2}+4\right)\right\}$

Detour around every jw axis pole by adding a semicircle of infinitesimal radius \&!

The rest is same...

Frequency Response Analysis Nyquist Stability Criterion

率 Choose the clockwise contour in s－plane， such that the right half s－plane is contained entirely．
率 Calculate G（jw）H（jw）along this contour． Consider critical points first and choose some intermediate points，Use of a computer may be inevitable．．．
摂 Construct the corresponding curve in GH－ plane．Pay attention to the rotation （clockwise or counterclockwise）．

Now we are ready to give Nyquist Stability Criterion

Frequency Response Analysis Nyquist Stability Criterion

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
$$

$1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$ is the characteristic equation. Nyquist stability criterion lets us know
The number of right half s-plane poles of $\mathrm{T}(\mathrm{s})$ by using The number of right half s-plane poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ and The number of clockwise encirclements of the point, $1+\mathrm{jo}$ made by the polar plot of $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw})$.

Frequency Response Analysis Nyquist Stability Criterion

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
$$

$1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$ is the characteristic equation. Nyquist stability criterion lets us know The number of right half s-plane poles of $T(s)=Z$ The number of right half s-plane poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathrm{P}$ The number of clockwise encirclements of the poin made by the polar plot of $\mathrm{G}(\mathrm{jw}) \mathrm{H}(\mathrm{jw})=\mathrm{N}$

$$
\mathrm{Z}=\mathbb{N}+
$$

Frequency Response Analysis Nyquist Stability Criterion

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
$$

Stable closed loop means $\mathbf{Z}=\mathbf{0}$. Obviously this means $\mathrm{N}=-\mathrm{P}$ The number of right half s-plane poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ must be equal to the number of counterclockwise encirclements of the point $-1+\mathrm{jO}$.

$$
\mathrm{Z}=\mathrm{N}+
$$

Frequency Response Analysis Nyquist Stability Criterion Example-I

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathrm{K} / \mathrm{s}^{2}$, clearly
G(jw)H(jw)=-K/w²
$1+G(s) H(s)=\left\{s^{2}+K\right\} / s^{2}$

Locus passes through -1+j0 point, i.e. the closed loop poles are located on the jw axis, $\mathrm{s}^{2}+\mathrm{K}=0$!

Frequency Response Analysis Nyquist Stability Criterion Example-II

率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathrm{K} / \mathrm{s}(\mathrm{s}-1)$, clearly $\mathrm{P}=1$

No matter what K is, locus encircles $\mathbf{- 1 + j 0}$ point one times in the clockwise direction, so $\mathrm{N}=1$

Frequency Response Analysis
Nyquist Stability Criterion
Example-1
率 $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\mathrm{K} / \mathrm{s}(\mathrm{s}-1), \mathrm{P}=1, \mathrm{~N}=1$
$\mathrm{Z}=\mathrm{N}+\mathrm{P}=1+1=2$
This result tells us that 2 of the closed loop poles lie on the right half s-plane.
$1+\mathrm{G}(\mathrm{s}) H(\mathrm{~s})=\frac{\mathrm{s}^{2}-\mathrm{s}+K}{\mathrm{~s}(\mathrm{~s}-1)}=0$
Zeros of the char. eqn. Have real parts equal to $\mathbf{1 / 2}$, i.e. on the right half s -play

You could check the CL stability by using the Routh test as well. See the root locus..

Frequency Response Analysis Nyquist Stability Criterion

园 If we can use Routh test, why should we use Nyquist stability criterion, which is more time-consuming?

Sometimes, you have only the frequency response data of $\mathrm{G}(\mathrm{s})$ and/or $\mathrm{H}(\mathrm{s})$, which may contain transducers, measurement devices etc. In such cases, Nyquist stability criterion gives a good idea about closed loop stability. Also, the use of Nyquist plots let us see the relative stability properties of the system at hand.

Frequency Response Analysis Nyquist Stability Criterion

夌 What if we have a time delay terms in the open loop transfer function?

Use the following series expansion, and truncate.
$e^{-T s}=\frac{1-\frac{T s}{2}+\frac{(T s)^{2}}{8}-\frac{(T s)^{3}}{48}+\cdots}{1+\frac{T s}{2}+\frac{(T s)^{2}}{8}+\frac{(T s)^{3}}{48}+\cdots}$
How reliable is this?

Frequency Response Analysis Nyquist Stability Criterion

\#of unstable Open Loop Poles	\#of Clockwise Encirclements of $-1+\mathrm{jO}(P)$	Sof Unstable Closed Loop poles N=Z +P	Feedback System is Stable/Unstable	\#of Clockwise Encirclements of $-1+\mathrm{jO}(-\mathrm{P})$
2	-2	0	Stable	2
0	3	3	Unstable	-3
5	-5	0	Stable	5
0	0	0	Stable	0
	-1	0	Stable	1
	-100	0	Stable	100

Nyquist Curve is a Conformal Map

Q Conformal map is an angle preserving map.

Information on Nyquist Plot Frequency Response of the Closed Loop

Information on Nyquist Plot Effect of Delay

Information on Nyquist Plot Amplification and Attenuation

