CONTROL SYSTEMS

Dog. Dr. Murat Efe

WEEK 12



1. Locate the open loop poles and zeros

2. Determine the loci on the real axis

3. Determine the asymptotes of root loci

4. Find the breakaway and break-in points

5. Determine the angle of departure from

a complex pole
ine the angle of arrival at a complex




Root Locus Analysis
Pole-Zero Cancellation

_N(s)  N(@)
D(s) D'(s)(s + a)

N(s) A(s)(s+a)
D'(s)(s+-a)  B(s)

TIHGWHK)

N(s)  B(s) N(s)B(s)
D'(s)(s+a) B(s) D'(s)B(s) 1

= DO)BE)TN©)AE) - DO)BE)+N$)AE) (s +a)
D'(s)B(s) D'(s)B(s)

N(s)B(s) 1 ‘ Canceled pole of G(s)

= D) B(s) 1 N(5)AG) (54 0) Is kept as a CL pole!



Root Locus Analysis
Pole-Zero Cancellation
An Example

s+1 5+3
SO ALt O ] | (s+3) is common

K(s+1) (s+3j
(s+2)(s+4) s+3

((s+2)(s+4)+K(s+ 1))(s T 3) 0 > Char. Eqn.
((s+2)(s+4)+K(s+1))=0 > Char. Eqn. for rooi/

- locus
Here is the
pole-zero '

Y(s)
H(s)

1+ KG(s)H(s)=1+

> (s+3) terms cancel

cancellation!




Root Locus Analysis
Pole-Zero Cancellation

N(s) — N(©)

A(s)  A'(s)(s+a)
D(s) D'(s)(s+a) N

G(s)= and H(s)=

G($)H(s)  D(s)s+a) B

T(S):]+G(S)H(S): I (]\)7((3‘) ) A'(S)((S;-OL)
' D'(s)(s-a B(s
Canceled pole is not a
N(s)A'(s) closed loop pole at all \

B D'(s)B(s) B N(s)A'(5) )
- D'(s)B(s)+ N(s)A'(s)  D'(5)B(s)+ N(s)A'(s)
D'(s)B(s)




Root Locus Analysis
Pole-Zero Cancellation
An Example (Same result is obtained!)

s+1 s+3
(s+2)(s+3)’ , A0 H (5} = Km [> (s+3) is common

K(s+1) (s+3j
(s+2)(s+4) s+3

((s+2)(s+4)+K(s+ 1))(s T 3) 0 > Char. Eqn.
((s+2)(s+4)+K(s+1))=0 > Char. Eqn. for rooi/

- locus
Here is the
pole-zero '

R(s) @II H(s) lI Gls) . Y(s)

G(s) =

1+ KG(s)H(s)=1+

> (s+3) terms cancel

cancellation!




Y(s)

Canceled pole is NOT a CL pole /




modify the gain K.

__] Modify the system dynamics suitably to obtain
the desired result, which means

and the device you used is called //



Design based on Root Locus
Description of the Compensation Problem

_] C(s) may remove some poles of G(s) and may
add new poles, or C(s) may remove some zeros
of G(s) and may add new zeros to change the
shape of root locus. /

] Once the shape of root locus becomes suita
to locate the desired closed loop poles e

adjustment of loop gain K is performed.



@ After some value of K,
< of the CL poles are unstable!




|

-1<_ ' '

Notice that, the CL poles are always stabl
this example. Adding zeros increase the s
of the CL system, this is due to the antici

behavior of the derivative action.



C(s)=K

Sz

S+ p

2

(W]

iciency (¢ ) at given

n.



G(s)

- s(s+2)

C(s)

Compensator




S$-206=—210°

(No zeros!) (Two poles




Keeping this angle
at 30° will let us
meet the angle
Jitior

—P —Z 0






Design based on Root Locus
Lead Compensation - An Example
Determine K from the Magnitude Condition

CHGS) ;s g5 =1

|Ks+29 4

s+54 S(S T 2)|52+j2‘/§ )

Unccxfmpensated
Compensated
s+2.9 5

K=47, C(s)=4.7
s+35.4

2.9
Time (sec)




Design based on Root Locus
Lead Compensation - An Example
Static Velocity Error Constant

Step Input
r(t)=1

K, = lim sC(s)G(s)
s—0

= lims(4.7s+2'9) i
s—0 s+54 )\ s(s+2)

~5.02sec.




Design based on Root Locus
Lead Compensation
More general case:

K, = hm sC(s)G(s) = lim S(K 1
—0 s—0 S+ p

¢, —0,=30"= arctan(

|Ks+z 4 |
S+ p s(s+2) =21 1243

Angle Condition

Solve the three equations for 2,

p/a{dl(



_]You have
this example. In a mor
several specifications imply them. For ex
the transient or steady state characteristics are
described and you find out the required CL
poles.

the root loci and make sure that you are on t
right way.

] Before jumping into equations, roughly ske%




C(s)=K ST Z-'Ep

S'+p

tem performs well during transient
eady state, use a lag




Typically, a desired static error constant is
given. Since the angle contribution of the lag
compensator is very small, the root loci does
not change significantly. If this is not the

2, if transient response is not
ou will be using a
vill be




5 1.06
os(s+D(s+2)

O s(s+1)(s+2)




With this configuration,

o 1.06
s(s+1)(s+2)




>
Compensator Plant




Design based on Root Locus
Lag Compensation - An Example

G(s) = LU K, =lmsG(s)=0.53
s(s+1D(s+2) s—0

S+ Z 1.06

COG =K DD

Kew = lim sC(5)G(s) = K%O.53




Design, R-Locus
Lag Comp. Example

e What would happen if there
were no K adjustment?




nal, Blue: Compensated,

25

P ——

40
30}f-=---

asuodsay welsAg

20}-----
D..----..
0

Time (sec)

Time (sec)

- asuodsay wWelsAsg

5
1
5t
0

Time (sec)

Time (sec)







Design based on Root Locus
Lag-Lead Compensation

O Calculate the relevant variables (o, {, o, etc)
O Firstly, design the Lead Compensator
O Calculate the angle deficiency
O Locate the zero of the compensator
O Locate the pole such that the angle
condition is met
O Secondly, design the Lag Compensator
O Locate its pole close to zero /
O According to steady state response specs.,
locate the zero
O Check the angle contribution of Lag C
© If necessary, retune the gain so tha
kept at its desired value.

IS



Design based on Root Locus
Lag-Lead Compensation - An Example

e Dominant CL poles are desired /

to have{ = 0.5
¢ Desired Undamped natural frequency
IS ®, = 5 rad/sec
e Desired Static velocity error consta
is K, = 80 sec



Design based on Root Locus
Lag-Lead Compensation - An Example

4

)= s(s+0.5)

Gs) 4
1+G(s) s°+0.55+4

I'(s)=

K, =limsG(s)=8sec”

s—0




Design based on Root Locus
Lag-Lead Compensation - An Example

—Cw, =-0.5%5=-2.5 Jo

®, j4.3301
Jo, = jl—Cz(Dn = j4.3301

—2.Sij4.3301
0 /
¥——H—— O

Now Calculate the -2.5 -0.5
angle deficiency
20 =
Lead Controller will contribute O

54.8° to make sure that X¢—>0=t(2k+1)180°



Design based on Root Locus
Lag-Lead Compensation - An Example

\ j(D
® j4.3301
Opioad| 108791
pLea 110
54.319 0
XX
-2.5 -0.5
v ezLead_epLead:54'80 l
s+1 4

=1=>K, =694

K —
il 5 +5.61 s(s+0.5)



Design based on Root Locus
Lag-Lead Compensation - An Example

C ()G —(694 ol jL
eaa ($)G(5) =| 6. s+5.61 ){ s(s+0.5)

K

v(new)

=limsC;,,(5)G(s) = 9.9 sec”




Design based on Root Locus
Lag-Lead Compensation - An Example

s+0.1
“5+0.0124

Cout () (5)G )—(694 — )(K — T j4
tead ()C1ag ()G (8) =| 6.94 ==~ | Kype 005 s(s+0.5)

K, =limsC,,,(5)Cyu (5)G() = K;,, 79.8114 sec”

Clag (5)=K,

lag

AN

Angle Contribution 1s: 0.8791°

Angle contribution is acceptably small. However, t
has slightly changed z. A very tiny tuning can be
if the design specifications are too stringent. For this
example, there is no need to do so, keep K,



Design based on Root Locus
Lag-Lead Compensation - An Example

(s+1)(s+0.1)

() =694 s (5 30.0124)

Now, test and see whether the design
specifications are met or not...



Design based on Root Locus
Lag-Lead Compensation - An Example
Step and Ramp Responses

N

—
n

e
o

()}
w
C —_—
(@] (0]
O C
@ >
r ! ‘g
£ =
- LL
4
%

20 | ) | 20
Time (sec) Time (sec)
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w
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o

System Response
Error Signal

o

10 20 30 e | 20
Time (sec) Time (sec)

o




K, =79.81139669944224 sec!
= 0. 49452458450471

Good enough
s=-1.12268288809756 2

Kiag = 80/79.81139669944224=1.00236311239195 -

CL Poles: s=-2.44966485404744 + j4.312791907360 / /

$=-1.12228732098688 and s=-0.10078297091824
/v

V4

Kiog = 0.97999709075950

CL Poles: s=-2.44773023820451 + j4.23959313579281
s=-1.12613839738740 and s=-0.10080112620358



Manipulating the roots and the poles of the
closed loop system may yield the desired
solution, which can be sought by root locus

method.

Stringent design specs. carry priority. Meeting
srecisely may require computer based







Frequency Response Analysis

Bode Plots - First Order Factors

1AL uﬂll! HIM J !l(ll!lhm Hl HH‘ ‘ |\I‘HH
TN "WI'IW”’ ”'“\llw; [l

0.5000
0.4774

Time (sec)




Frequency Response Analysis
Bode Plots - First Order Factors
Some Matlab Work

» num = 1;

»den=[1 2];

» w=2*pi*[0.01 0.1 1 10 100];

» [Magnitude,Phase|=bode(num,den,w);
» Magnitude'

ans =

0.4998 0.4770 0.1517 0.0159 0.0016




Frequency Response Analysis
Bode Plots - First Order Factors - An Example

16(s +2)(s+10) _ (s/2+1)(s/10+1)
s(s+40)(s+100)  s(s/40+1)(s/100+1)

(1+0.5s5)(1+0.1s)
s(1+0.0255)(1+0.01s)

(I+ jO.5®)(1+ jO.lw)
jo(1+ j0.025m)(1+ j0.01w)
1+ j0.50|1+ j0.10)
joll+ j0.0250[1+ j0.01n
Z/G(jo) = arctan(0.5m) + arctan(0.1m) — 90
—arctan(0.025w) — arctan(0.01w)

G(s) =

((s)=10.08

G(jo)=0.08

G(jw)| = 0.08‘




Frequency Response Analysis
Bode Plots - First Order Factors - An Example

Bode Diagrams

From: U(1)

Normally, we do

not mark these

poles and zeros! /
16(s+2)(s+10)
s(s+40)(s+100)

AN\ N

Phase (deg), Magnitude (dB)

G(s)=

10° 10

Frequency (rad/sec)



_] Set a startin
| G(Gw) | at that frequency.

] Then Sweep the frequency axis. If G(s) has n

( ) at zero, start with a curve of

slope ( ) dB/decade. /
] Continue sweeping: At every ( )

( ) the slope 20m dB/deca

where m is the multiplicity of that pole (zefo)-



Frequency Response Analysis
Bode Plots - Quadratic Factors

2
!
G(s) =5t =

s+ 200 s+ 0. o Y .
+2C +1
® ®

n n

1 1

G(jw)=

1+2§(]‘£’ ' = j+2c(j§j

20log|G(jow)|= —2010{\/ (1 -

ZG(jo) = —arctan




le=1
-] €=0 Poles are on the imaginary axi
L] 0<C<1 Several situations... We will see/

4




Frequency Response Analysis
Bode Plots - Quadratic Factors

T -20 dB/decade
\

2
n

@, . »,
= s +2lm s+ (s—sl) S_Sz)

Ut =—(Dn(CiC2 _1)




Frequency Response Analysis
Bode Plots - Quadratic Factors

\

G(s)=—

s +2m 5+

G(jo)= ;z
=

n




Frequency Response Analysis
Bode Plots - Quadratic Factors

0dB -
N\




Frequency Response Analysis
Bode Plots - Quadratic Factors -

—

£=0.2
£=0.3
£=0.5
£=0.7

®, =o,y1-2 for 0<(<1/42

If{>1/ V2 There is no resonant peak




Transfer functions having neither poles nor

on the right half s-plane are

2MmS.

-



Frequency Response Analysis
Minimum-Phase/Nonminimum-Phase Systems

®° + z°

G(jo)| =

® +p°
ZG(jo)
arctan(m/2) — arctan()
arctan(®/2) + arctan( )

— (arctan(oa/Z) + arctan(co))
— (arctan(O)/Z) — arctan(co))




Frequency Response Analysis
Minimum-Phase/Nonminimum-Phase Systems

Frequency Freguency




Frequency Response Analysis
Transport Lag (Delay)

G(s)=e ™
G(jo)=e " =cos(al) - jsin(aT)
G(jw)=1

180

ZG(jo)=-uT (radians) or — TmT (degrees)




Frequency Response Analysis
Transport Lag - An Example

e~ JoL

Ol =13 T

2010g|G(jo)| = 20 logle_j(”L | —20log[l + joT|

=-20log|l + joT|

ZG(jo) =—-wlL —arctan(w?’)




Frequency Response Analysis
Gain Margin and Phase Margin

G(s)  KG'(s)
1+G(s) 1+KG'(s)

1(s)=

G(jw) __KG'(jo)
1+G(jo) 1+KG'(jo)

I(jo)=

] When holds true, the closed loop system is
at the verge of instability. /
| At a frequency, say w,, G'(jw,) is a negative real numbe /
/G'(jw;)=180°. Then w;, is called equency
The gain making is the critical gzy’/,/ which
is the calculated as A

/



Increasing the gain K




Frequency Response Analysis
Gain Margin and Phase Margin




Frequency Response Analysis
Gain Margin and Phase Margin




o /l/
/
/ °
@
.
RS
uR\Nw——

V/4

System is stable System is upstable!

You can multiply the current You have to divide t ,// dArrent

loop gain at most by K, loop gain atleast by K,

/




Can I find the same upper limit of gain by using
Routh criterion?

YES...
So, why don’t we use it?

Routh criterion does not tell anything about relative
stablllty The quantity 1+KG’'(jw) for a fairly valid K
ory close to zero in magnitude! A tmy




10

Phase (deg); Magnitude (dB)

Gm=9.5424 dB (at 3.3166 rad/sec), Pm=90 deg. (at 1 rad/sec)

10°

Frequency (rad/sec)

3—8

G'(s) =
(5) s2+35+2

: G(s)= KG'(s)

T(S) _ (J(S)
1+ G(s)

—2/3< K <3 (Routh Cr.)|

GM =20log3 =9.5424

1t PM =90° at 1 rad/sec




Frequency Response Analysis
Polar Plots - A Simple Example







—




There may be more
than one phase or gain
CrOSSOVer | encies.
We will restrict
ourselves to the cases
[llustrated here




Imaginary Axis

Nyquist Diagram

1: L C C
0.8~ |
0.6 “ |
—
0.4 - / -
System: sys
02| Real: -0.75 |
' Imag: -0.00343
Frequency (rad/sec): -0.0177
0t [ |
-0.2 o
-0.4 -
-0.6 g
0.55-1.5 T(s) = _KCE)
S°+35+2 +KG(s)
1 C r r r r N r
-1 -0.8 -0.6 -0.4 -0.2 0.2

Real Axis

0.4




Imaginary Axis

Nyquist Diagram

1¢ C C C [ C
0.8 - ,
0.6 —~ ,
0.4 o
System: sys
0o Real-1 |
", Imag: -0.00973
Frequency (rad/sec): -0.0149
q | .
-0.2 - o
-0.4 - .
-0.6 - o
-0.8 - o
-1 C r r r r r
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Real Axis



H(s)

1+G(s)H(s)=0 is the characteristic equation. Nyquist
stability criterion lets us know /
by using /

Let’s see the details...



Why are we interested in the point -1+j0 ?

Because the denominator of
G(s)
N 1+G(s)H(s)

Is equal to zero when G(s)H(s)=-1=-1+]0. /
Let s=jw, and obtain the polar plot of

G(jw)H(Jw) while running w from 0 to .
Intuitively, we can say that the closed loo
poles should somehow be related to the
deployment of the geometric place of
G(jw)H(jw) curve according to poin

T(s)




3% What is encirclement?

Mo ancirelamearned



3% What is encirclement?

L
L
1
; 0
- 0
; -
; Q
: g
: Q
. ;
: *
. .
- 4
: 4
. 4
. .
K .
LN -
2 .
., et
.". an®
---- anm /

W

resd

(L



% Let's see the mapping between a special
clockwise contour in s-plane and the curve
it corresponds in G(jw)H(jw) plane.

Since the radius is «, the
interior of this closed
contour contains every
unstable zero or pole of the
open loop transfer function
G(s)H(s), and we can use
the theorems of complex
mathematics for our y.rJ;



% G(s)H(s)=1/(s+1), clearly
G(jw)H(Jw)=1/(w+1)

NOLERNEANENIAVENIOIALO1 U AN
Al wa =g dolneg oy 13 to 39

{L L‘;
L,
L
:
h

3 =
S
ST
(P
Lo
L

n
SNHE



% G(s)H(s)=1/(s-1), clearly
G(w)H(w)=1/(Gw-1)

NOLERNAIANVENIAVENIOIALO] LTy
AV BVERTEN BINYMOWASHOISEE



# G(s)H(s)=1/{s(s+1)}, clearly
G(jw)H(jw)=1/{jw(jw+1)}

You cannot choose this
contour any more! The
contour passes through a
singularity (There is a
pole at s=0).
DEtouaroundit by
AU UINGEANSEMICINGIE

]nf]ﬂ]tas]mayhs ea



# G(s)H(s)=1/{s(s+1)}, clearly
G(jw)H(Gw)=1/{jw(w+1)}

Detour around it by
adding a semicircle of

Radius = ¢ | infinitesimal radius ¢!
=

= .} Let’s analyze what
NappPensmnowss




G(s)H(s) 1/{s(s+1)}, clearly
G(jw)H(Gw)=1/{w(w+1)}

w:from ¢ to |
@ from /2 to -n/

ABC|s=¢ce | @ from -




G(s)H(s) 1/{s(s+1)}, clearly

S(s+1) - je(—je+1)
11

= ot
g”+1 J 552 +1




¥ G(s)H(s —1/{s(s+1)}, clearly

G() J‘_/)IJ (J J‘J)—'




. (J(_))J'J(_))—' l_/{'J | S A
(‘JQJ\_/)IJUJ\_/)—- |/ JJ‘J{JJ‘J T |);




# G(s)H(s)=1/{s(s+1)}, clearly
G(jw)H(Gw)=1/{jw(w+1)}

| Infinity radius semicircle from the - proveeeeees ]
s-plane is mapped to the origin of
GH-plane



# G(s)H(s)=1/{s(s+1)}, clearly
G(jw)H(Gw)=1/{jw(w+1)}

| Infinitesimal semicircle of radius ¢ - pressessees -1
from the s-plane is mapped as an
infinity radius semicircle in GH-plane



¥ G(s)H(s)=1/{s(s?+4)}, clearly
G(Gw)H(w)=1/{jw(-w?+4)}

)etour around every
jw axis pole by

|=c0 adding a semicircle
of: ]nf]n]ts;]maJ /
o hadiusie!

The rest iIs ':9'-
SE_]IIJ :‘_J‘JJJ




% Choose the clockwise contour In s-plane,
such that the right half s-plane is contained
entirely.

% Calculate G(jw)H(Jw) along this contour.
Consider critical points first and choose
some intermediate points. Use of a
computer may be Jn—\wwj_)]wu

Construct the corres I)JILJJIJ g curvein GH-
planenPaysatten ] il Lo the rotation
(CIOCKWISE O COUNLENCIOCKWISE):

NoWwawerareready togiveNyquistiStabilit '/ Hterion



H(s)

1+G(s)H(s)=0 is the characteristic equation. Nyquist
stability criterion lets us know /
by using /



H(s)

1+G(s)H(s)=0 is the characteristic equation. Nyquist

stability criterion lets us know /
/

|
+



——
H(s)

Stable closed loop means Z=0. Obviously this means N=-P
The number of right half s-plane poles of G(s)H(s) must

equal to the number of encirclement
the point -1+]j0.

|
+




% G(s)H(s)=K/s?, clearly
G(Jw)H(jw)=-K/w?
1+G(s)H(s)= {s?+K}/s?

Locus passes through -1+j0 point, i.e. the closed loop

poles are located on the jw axis, s2+K=0!



% G(s)H(s)=K/s(s-1), clearly

No matter what K is, locus encircles -1+j0 point one

times in the clockwise direction, so



% G(s)H(s)=K/s(s-1), P=1, N=1

This result tells us that 2 of the closec
loop poles lie on the right half s-plane.

1+G(s)H(s)= s:(':_:;( =0 /

Zeros of the char. eqn. Have real parts
equal to 1/2, i.e. on the right half s-pl

You could check the CL stability b
the Routh test as well. See the root locus..



Frequency Response Analysis
Nyquist Stability Criterion

| If we can use Routh test, why should we
use Nyquist stability criterion, which is
more time-consuming?

Sometimes, you have only the frequency
response data of G(s) and/or H(s), which

may contain transducers, measurement /
devices etc. In such cases, Nyquist
stability criterion gives a good idea abou

closed loop stability. Also, the use of

Nyquist plots let us see the relative
stability properties of the system




Frequency Response Analysis
Nyquist Stability Criterion

_ | What if we have a time delay terms in the
open loop transfer function?




#of unstable
Jpern DOL

#of Clockwise
Encirclements of
i0 (P)

#tof Clockwise
Encirclements
of -1+j0 (-P)

2

Unstable

Stable

Stable

Stable A’

Stable 1 ’//

OO0 0 0O W O

Unstable
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B R



.. | 1+G(w,) |

0‘.
L3
0.’
0
Q
0

Attenus B /




