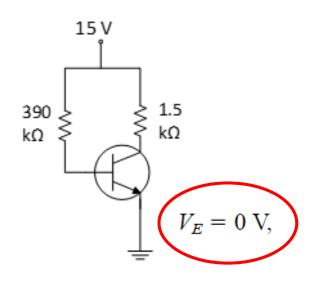


BME 212 Electronics Laboratory

Experiment #4 DC Biasing of BJT

Objective

The objective of this experiment is to study the DC levels for the variety of important BJT biasing configurations and understanding the effect of transistor parameters on DC biasing.



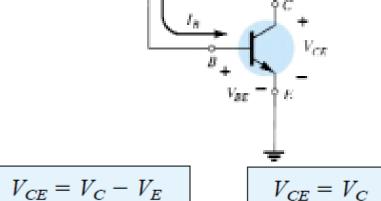
Preliminary Work

1- For given circuits below, calculate and tabulate the V_{CEQ} , I_{CQ} , I_{B} values

 $(\beta = 150 \text{ and } V_{BE} = 0.7 \text{ V})$

Fixed Bias

Hints:


$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

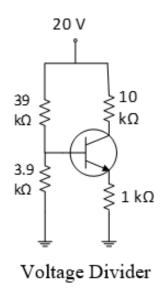
$$I_C = \beta I_B$$

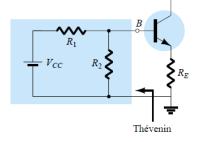
$$V_{CE} + I_C R_C - V_{CC} = 0$$

$$V_{CE} = V_{CC} - I_C R_C$$

$$V_{BE} = V_B - V_E$$

$$V_{BE} = V_B$$


Preliminary Work (Cont.)



2- For given circuits below, calculate and tabulate the V_{CEQ} , I_{CQ} , I_{B} values

 $(\beta = 150 \text{ and } V_{BE} = 0.7 \text{ V})$

Hints:

Figure 4.27 Redrawing the input side of the network of Fig. 4.25.

$$R_{\rm Th} = R_1 || R_2$$

$$E_{\rm Th} = V_{R_2} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$I_B = \frac{E_{\rm Th} - V_{BE}}{R_{\rm Th} + (\beta + 1)R_E}$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

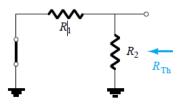
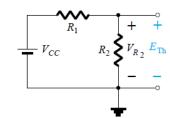
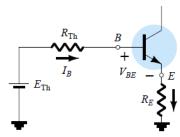
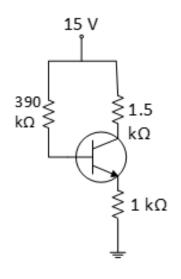




Figure 4.28 Determining R_{Th} .

Figure 4.29 Determining E_{Th} .


Figure 4.30 Inserting the Thévenin equivalent circuit.

Preliminary Work (Cont.)

3- For given circuits below, calculate and tabulate the V_{CEQ} , I_{CO} , I_{B} values (β = 150 and V_{BE} = 0.7 V)

Emitter Bias

Hints:
$$+V_{CC}-I_BR_B-V_{BE}-I_ER_E=0$$

 $I_E=(\beta+1)I_B$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} \qquad I_C = \beta I_B$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

$$V_E = I_E R_E \qquad V_C = V_{CE} + V_E$$

$$V_B = V_{CC} - I_B R_B$$

$$V_B = V_{BE} + V_E$$

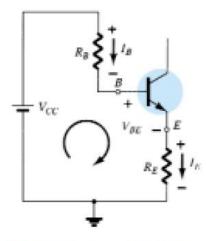
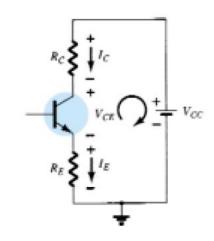
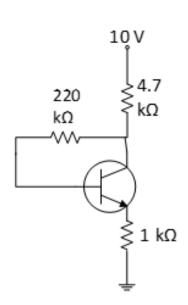



Figure 4.18 Base-emitter loop.

Figure 4.21 Collector–emitter loop.


Preliminary Work (Cont.)

4- For given circuits below, calculate and tabulate the V_{CEQ} ,

Hints:

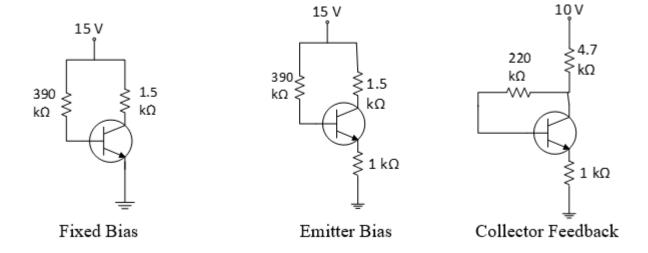
 I_{CQ} , I_{B} values (β = 150 and V_{BE} = 0.7 V)

Collector Feedback

$$\begin{split} V_{CC} - \beta I_B R_C - I_B R_B - V_{BE} - \beta I_B R_E &= 0 \\ V_{CC} - V_{BE} - \beta I_B (R_C + R_E) - I_B R_B &= 0 \\ I_B &= \frac{V_{CC} - V_{BE}}{R_B + \beta (R_C + R_E)} \\ I_B &= \frac{V'}{R_B + \beta R'} \qquad I_C = \beta I_B \qquad I_{C_Q} = \frac{\beta V'}{R_B + \beta R'} \\ I_{C_Q} &= \frac{\beta V'}{R_B + \beta R'} \cong \frac{\beta V'}{\beta R'} = \frac{V'}{R'} \end{split}$$

 $I_E R_E + V_{CE} + I'_C R_C - V_{CC} = 0$

 $V_{CE} = V_{CC} - I_C(R_C + R_E)$


Figure 4.35 Base–emitter loop for the network of Fig. 4.34.

Procedure

1- For given circuits below, measure and tabulate the V_{CEQ} , I_{CQ} , I_{B} values and compare your results with Preliminary Work 1,3 and 4.

BME212 Report#4 Results

1) Obtaining V_{CEQ} , I_{CQ} , I_{B} and β values of each circuits.

	V _{CEQ}			I _{cq}			I _B		
	Pre - β = 150	Pre-β ₂ = 200	Measured	Pre - β = 150	Pre - β ₂ = 200	Measured	Pre - β = 150	Pre - β ₂ = 200	Measured
Fixed Bias									
Emitter Bias									
Voltage Divider									
Collector Feedback									

Comment: