

BME 212 Electronics Laboratory

Experiment #6 Transfer Characteristics of FET and DC

Objective

The objective of this experiment is understandig the characteristics of the FET and to become familiar in the use of load-line analysis to examine FET networks.

Preliminary Work

1- Using figure given below determine the values of I_{DSS} and V_{P} , plot the transfer characteristics using Shockley's equation.

The level of V_{GS} that results in $I_D = 0$ mA is defined by $V_{GS} = V_P$, with V_P being a negative voltage for n-channel devices and a positive voltage for p-channel JFETs.

Preliminary Work (Cont.)

2) For given circuit below using given biasing conditions calculate the V_{GSQ} , I_{DQ} , V_{DS} , V_{D} , V_{G} , and V_{S} . Plot the transfer characteristic (Shockley curve) of the circuit and

repeat the step a.

$$I_{DQ} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

$$V_{DS} = V_{DD} - I_D R_D$$

 $V_{GSo} = -V_{GG}$

Hints:

Preliminary Work (Cont.)

3) For given circuit below using given biasing conditions, determine the Q point and calculate the V_{GSQ} , I_{DQ} , V_{DS} , V_D , V_G , and V_S

Preliminary Work (Cont.)

4) For given circuit below using given biasing conditions,

a) Determine the Q point and calculate the V_{GSQ} , I_{DQ} , V_{DS} , V_D , V_G , and V_S .

b) If, $R_s = 560 \Omega$ repeat the step a.

Procedure

1) For given circuit below

a) Adjust the V_{GG} voltage to have following V_{GS} values and measure the corresponding I_D current value.

V _{GS} (V)	0.0	-0.1	-0.2	-0.4	-0.6	-0.8	-1.0
I _D (mA)							

Procedure

b) Adjust the V_{GG} value to have $V_{GS} = -0.1$ V. Adjust the V_{DD} voltage value to have V_{DS} voltage shown in table and measure the corresponding I_D values.

V _{DS} (V)	1.0	3.0	6.0	8.0	10.0
I _D (mA)					

c) Adjust the V_{GG} value to have V_{GS} = -0.2 V. Adjust the V_{DD} voltage value to have V_{DS} voltage shown in table and measure the corresponding I_D values.

V _{DS} (V)	1.0	3.0	6.0	8.0	10.0
I _D (mA)					

Procedure

d) Using measurements in step a plot the $I_{D_{-}}V_{GS}$ characteristic , using measurements in steps b and c plot the $I_{D_{-}}V_{DS}$ characteristic.

e) As $V_{GS} = -0.15$ V calculate the I_D point from the $I_D - V_{GS}$ characteristic, measure the I_{DQ} and V_{GSQ} and compare the results.

BME212 Report#6 Results

1) a) Obtaining I_D values.

V _{GS} (V)	0.0	-0.1	-0.2	-0.4	-0.6	-0.8	-1.0
I _D (mA)							

b) Obtaining I_D values for $V_{GS} = -0.1$ V.

V _{DS} (V)	1.0	3.0	6.0	8.0	10.0
I _D (mA)					

c) Obtaining I_D values for $V_{GS} = -0.4$ V.

V _{DS} (V)	1.0	3.0	6.0	8.0	10.0
I _D (mA)					

I_{D-}V_{GS} characteristic

d) Plot characteristics

$I_{D\,-}\,V_{DS}$ characteristic

BME212 Report#6 Results (Cont.)

e) Obtaining I_{DQ} and V_{GSQ} values

	I _{DO}	V _{GSO}
Calculated		
Measured		

Comment: