# BME 212 Electronics Laboratory 

Experiment \#8 OPAMP Characteristics and Basic OPAMP Circuits

## Objective

- The objective of this experiment is understanding applications of inverting, non-inverting, summing and differantial amplifer circuits.


## Preliminary Work

1. Design an inverting-summing amplifier by choosing resistors $\mathrm{Rf}, \mathrm{Ra}, \mathrm{Rb}, \mathrm{Rc}$ and Rd so that $v_{o}=-\left(3 v_{a}+5 v_{b}+4 v_{c}+2 v_{d}\right)$. Then, draw your final circuit diagram.
(Hint : Start by choosing a feedback resistor (Rf).)

$$
\text { 2. } \begin{aligned}
\mathrm{Ra} & =22 \mathrm{k} \Omega \\
\mathrm{Rb} & =75 \mathrm{k} \Omega \\
\mathrm{Rc} & =130 \mathrm{k} \Omega \\
\mathrm{Rd} & =100 \mathrm{k} \Omega \\
\mathrm{Va} & =10 \mathrm{~V} \\
\mathrm{Vb} & =8 \mathrm{~V} \\
+\mathrm{Vcc} & =+15 \mathrm{~V} \\
-\mathrm{Vcc} & =-15 \mathrm{~V}
\end{aligned}
$$


a. Find Vo
b. What is the resistance seen by the signal source Va ?
c. What is the resistance seen by the signal source Vb ?

## Preliminary Work (Cont.)

3. The input resistance and output resistance of the opamp shown in the figure $x$ (inverting amplifier) are $400 \mathrm{k} \Omega$ and $4 \mathrm{k} \Omega$ respectively. Also open loop gain is 200,000 . If this opamp is operating in its linear region;

$$
\begin{aligned}
& \mathrm{Rs}=5 \mathrm{k} \Omega \\
& \mathrm{Rf}=100 \mathrm{k} \Omega \\
& +\mathrm{Vcc}=+20 \mathrm{~V} \\
& -\mathrm{Vcc}=-20 \mathrm{~V}
\end{aligned}
$$

-Calculate the voltage gain (Vo/Vg)
-If $\mathrm{Vg}=1 \mathrm{~V}$ calculate the value of Vn in microvolts
-Calculate the resistance seen by the signal source ( Vg )
-Repeat (a)-(c) using the ideal model for the opamp.


## Procedure

1) Set up the circuits a, c, and c given below. For all circuits observe $v_{\text {in }}(t)$ and $v_{0}(t)$ then draw into the graph paper and calculate closedloop gains ( $\mathrm{A}_{\mathrm{cL}}$ ) . Also for circuit b plot the Vout vs. Vin using the X-Y plot function on the oscilloscope and draw the graph into the result paper.
a) $\mathrm{Va}=0.1 \sin (2000 \pi t) \mathrm{V}$ $\mathrm{Vb}=0.2 \sin (2000 \pi t) \mathrm{V}$ $\mathrm{Vcc}=+-15 \mathrm{~V}$ $R f=100 \mathrm{k} \Omega, \mathrm{Ra}=1 \mathrm{k} \Omega$ $R b=2.2 \mathrm{k} \Omega$


## Procedure (Cont.)

b) $v_{\text {in }}(t)=0.1 \sin (2000 \pi t) \mathrm{V}$
$\mathrm{Vcc}=+-15 \mathrm{~V}$
$\mathrm{Rs}=1 \mathrm{k} \Omega, \mathrm{Rf}=100 \mathrm{k} \Omega, \mathrm{Rg}=1 \mathrm{k} \Omega$
c) $\mathrm{Va}=0.1 \sin (2000 \pi t) \mathrm{V}$
$\mathrm{Vb}=0.1 \sin (2000 \pi t) \mathrm{V}$
$\mathrm{Vcc}=+-15 \mathrm{~V}$
$\mathrm{Ra}=1 \mathrm{k} \Omega, \mathrm{Rb}=100 \mathrm{k} \Omega$
$R c=1 k \Omega, R d=100 k \Omega$


## BME212 Report\#8 Results

1) Draw input vs. output voltages
A.

B.


# BME212 Report\#8 Results (Cont.) 

C.


