

BME 212 Electronics Laboratory

Experiment #8 OPAMP Characteristics and Basic OPAMP Circuits

Objective

• The objective of this experiment is understanding applications of inverting, non-inverting, summing and differantial amplifer circuits.

Preliminary Work

- 1. Design an inverting-summing amplifier by choosing resistors Rf, Ra, Rb, Rc and Rd so that $v_o = -(3v_a + 5v_b + 4v_c + 2v_d)$. Then, draw your final circuit diagram. (Hint : Start by choosing a feedback resistor (Rf).)
- 2. Ra = 22kΩ
 - $Rb = 75k\Omega$
 - $Rc = 130k\Omega$
 - $Rd = 100k\Omega$
 - Va = 10V
 - Vb = 8V
 - +Vcc = +15V
 - -Vcc = -15V
- a. Find Vo
- b. What is the resistance seen by the signal source Va?
- c. What is the resistance seen by the signal source Vb?

Preliminary Work (Cont.)

3. The input resistance and output resistance of the opamp shown in the figure x (inverting amplifier) are $400k\Omega$ and $4k\Omega$ respectively. Also open loop gain is 200,000. If this opamp is operating in its linear region;

 $Rs = 5k\Omega$

- $Rf = 100k\Omega$
- +Vcc = +20V
- -Vcc = -20V

•Calculate the voltage gain (Vo/Vg)

•If Vg = 1V calculate the value of Vn in microvolts

•Calculate the resistance seen by the signal source (Vg)

•Repeat (a)-(c) using the ideal model for the opamp.

Procedure

1) Set up the circuits a, c, and c given below. For all circuits observe $v_{in}(t)$ and $v_o(t)$ then draw into the graph paper and calculate closed-loop gains (A_{CL}). Also for circuit b plot the Vout vs. Vin using the X-Y plot function on the oscilloscope and draw the graph into the result paper.

a) $Va = 0.1 \sin(2000\pi t) V$ $Vb = 0.2 \sin(2000\pi t) V$ Vcc = +-15V $Rf = 100k\Omega$, $Ra = 1k\Omega$ $Rb = 2.2k\Omega$

Procedure (Cont.)

b) $v_{in}(t) = 0.1 \sin(2000\pi t) V$ Vcc = +-15VRs = $1k\Omega$, Rf = $100k\Omega$, Rg = $1k\Omega$ c) Va = 0.1 sin(2000 πt) V $Vb = 0.1 \sin(2000\pi t) V$ Vcc = +-15VRa = $1k\Omega$, Rb = $100k\Omega$ $Rc = 1k\Omega$, $Rd = 100k\Omega$

BME212 Report#8 Results

1) Draw input vs. output voltages

BME212 Report#8 Results (Cont.)

C.