CEN 207 Physical Chemistry

Text book:
Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, $11^{\text {th }}$
Edition, Oxford University Press.

Reference books
. Physical Chemistry, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
. Physical Chemistry, Ira N. Levine

B. The kinetic model

The Maxwell-Boltzmann distribution of speeds: an expression for the distribution of the kinetic energy;

$$
f(v)=K e^{-\epsilon / k T}
$$

where K is a constant of proportionality. The kinetic energy is
$\epsilon=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} m v_{z}^{2}$
$f(v)=K e^{-\left(m v_{x}^{2}+m v_{y}^{2}+m v_{z}^{2}\right) / 2 k T}=K e^{-m v_{x}^{2} / 2 k T} e^{-m v_{y}^{2} / 2 k T} e^{-m v_{z}^{2} / 2 k T}$
$f\left(v_{x}\right)=K_{x} e^{-m v_{x}^{2} / 2 k T}$ (for x coordinate)

B. The kinetic model

Determine the constants $\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}$ and K_{z}

To determine the constant K_{x}, note that a molecule must have a velocity component somewhere in the range $-\infty<\mathbf{v}_{\mathbf{x}}<\infty$, so integration over the full range of possible values of v_{x} must be a total probability of 1 :

$$
\int_{-\infty}^{\infty} f\left(v_{x}\right) d v_{x}=1
$$

For $f\left(v_{x}\right)$
$\mathrm{K}_{\mathrm{x}}=(\mathrm{m} / 2 \pi \mathrm{kT})^{1 / 2}$ and

$$
f\left(v_{x}\right)=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} e^{-m v_{x}^{2} / 2 k T}
$$

The expressions for $f\left(v_{y}\right)$ and $f\left(v_{z}\right)$ are analogous.

B. The kinetic model

Write a preliminary expression for $f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{z}\right) d v_{x} d v_{y} d v_{z}$.
The probability that a molecule has a velocity in the range v_{x} to $v_{x}+d v_{x}, v_{y}$ to $v_{y}+d v_{y}, v_{z}$ to $v_{z}+d v_{z}$ is

$$
\begin{aligned}
& \mathrm{f}\left(v_{x}\right) \mathrm{f}\left(v_{y}\right) \mathrm{f}\left(v_{z}\right) \mathrm{d} v_{x} \mathrm{~d} v_{y} \mathrm{~d} v_{z}=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \overbrace{e^{-m v_{x}^{2} / 2 k T} e^{-m v_{y}^{2} / 2 k T} e^{-m v_{z}^{2} / 2 k T}}^{e^{-m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) / 2 k T}} * d v_{x} d v_{y} d v_{z} \\
& =\left(\frac{m}{3 / /^{2}} e^{--^{-m} \nu^{2} / 2 k T} d v_{x} d v_{y} d v_{z}\right.
\end{aligned}
$$

where $v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$

B. The kinetic model

Calculate the probability that a molecule has a speed in the range \mathbf{v} to $\mathbf{v}+\mathbf{d v}$. think three velocity components
. three coordinate velocity space
. think the volume of a spherical shell of radius r and thickness $d r$. That volume is $4 \pi r^{2} d r$. For velocity space (analogous to that volume) $4 \pi v^{2} d r$.

If probability is written for $f(v) d v$

$$
f(v) d v=4 \pi v^{2} d v\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-m v^{2} / 2 k T}
$$

B. The kinetic model

and $f(v)$ itself, after minor rearrangements , is

$$
f(v)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T}
$$

$$
\text { Because } R=N_{A} k, m / k=m N_{A} / R=M / R
$$

$$
f(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T}
$$

Maxwell-Boltzmann distribution (KMT)

