CEN 207 Physical Chemistry

Text book:
Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, $11^{\text {th }}$
Edition, Oxford University Press.

Reference books
. Physical Chemistry, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
. Physical Chemistry, Ira N. Levine

The formulation of the First Law:

Heat and work are equivalent ways of changing the internal energy of system. The internal energy of an isolated system is constant (The First Law of thermodynamics).

$$
\Delta U=q+w \quad \text { (Mathematical statement of the First Law) }
$$

Expansion work:

$$
\begin{aligned}
& d U=d q+d w, d w=-|F| d z(\text { work done })(-) \text { sign implies internal energy decreasing. } \\
& w=-\int_{V_{i}}^{V_{f}} p_{e x} d V
\end{aligned}
$$

Expansion against constant pressure:

$$
w=-p_{e x} \int_{V_{i}}^{V_{f}} d V=-p_{e x}\left(V_{f}-V_{i}\right)=-p_{e x} \Delta V
$$

The formulation of the First Law:

Reversible expansion: a change that can be reversed;
$d w=-p_{e x} d V=-p d V$
p_{ex} : external pressure of gas
p : pressure of gas (in the vessel)
$w=-\int_{V_{i}}^{V_{f}} p d V \rightarrow p=\frac{n R T}{V} \rightarrow w=-n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$
work of reversible expansion (perfect gas).

Heat transactions:

In general, the change in internal energy;
$d U=d q+d w_{\text {exp }}+d w_{a d d}$
At constant $\mathrm{V}, \mathrm{dw}_{\text {exp }}=0$, however if there is no addition work
$d U=d q$ Heat transferred at constant volume or $d U=d q_{V}$
$\int_{i}^{f} d U=\int_{i}^{f} d q_{V} \rightarrow \Delta U=q_{V} q_{v}$ is not written as $\Delta \mathrm{q}_{v}$, because q is not a state function.

Heat capacity

$C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$ Heat capacity at constant volume
$d U=C_{V} d T=C_{V} \int_{i}^{f} d T=C_{V}\left(T_{f}-T_{i}\right) \rightarrow \Delta U=C_{V} \Delta T$
$q_{V}=C_{V} \Delta T$

Enthalpy

$H=U+P V$ definition
For a general infinitesimal always change in the state of the system. Changes;
$U \rightarrow U+d U$
$p \rightarrow p+d p$
$\mathrm{V} \rightarrow \mathrm{V}+\mathrm{dV}$
$d H=d U+p d V+V d p$
$d U=d q+d w$
$d H=d q+d w+p d V+V d p \rightarrow d H=d q+V d p$
at constant $\mathrm{p} d H=d q_{p}$
$\Delta H=\Delta U+\Delta n R T$ relation between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$
Text book: Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, 11 th Edition, Oxford University Press.

Enthalpy

$$
\begin{aligned}
& C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p} \text { Heat capacity at constant pressure } \\
& d H=C_{p} d T=C_{p} \int_{i}^{f} d T=C_{p}\left(T_{f}-T_{i}\right) \rightarrow \Delta H=C_{p} \Delta T \\
& q_{p}=C_{p} \Delta T \\
& C_{p, m}=a+b T+\frac{c}{T^{2}} \quad \text { a, b and c independent of temperature } \\
& C_{p}-C_{V}=n R
\end{aligned}
$$

