## CEN 207 Physical Chemistry

Text book:
Atkins' Physical Chemistry, Peter Atkins, Julio de Paula, James Keeler, $11^{\text {th }}$
Edition, Oxford University Press.

Reference books
. Physical Chemistry, Robert J. Silbey, Robert A. Alberty, Moungi G. Bawendi
. Physical Chemistry, Ira N. Levine

## THERMOCHEMISTRY

## Adiabatic changes:

Provided the capacity is independent of temperature, the change in the internal energy is
$\Delta U=\left(T_{f}-T_{i}\right) C_{v}=C_{v} \Delta T$
Because the expansion is adiabatic $q=0, \Delta U=q+w \rightarrow \Delta U=w_{\text {adiabatic }}=C_{v} \Delta T$ (work of adiabatic change)
In a reversible adiabatic expansion: For a perfect gas
$\Delta U=C_{v} \Delta T, C_{v} d T=-p d V=-\frac{n R T}{V} \mathrm{~d} V$
$C_{v} \frac{d T}{T}=-n R \frac{d V}{V}$ integration $C_{v} \int_{T_{i}}^{T_{f}} \frac{d T}{T}=-n R \int_{V_{i}}^{V_{f}} \frac{d V}{V} \rightarrow C_{v} \ln \frac{T_{f}}{T_{i}}=-n R \ln \frac{V_{f}}{V_{i}}$

## THERMOCHEMISTRY

Adiabatic changes:

$$
\begin{aligned}
& \frac{C_{v}}{n R} \ln \frac{T_{f}}{T_{i}}=\ln \frac{V_{f}}{V_{i}} \rightarrow \frac{C_{v}}{n R}=\frac{C_{v, m}}{R}=c \quad \text { (and use } \ln x^{\mathrm{a}}=\text { alnx) } \\
& \ln \left(\frac{T_{f}}{T_{i}}\right)^{c}=\ln \frac{V_{f}}{V_{i}} \Rightarrow T_{f}=T_{i}\left(\frac{V_{f}}{V_{i}}\right)^{c} \\
& V_{i} T_{i}^{c}=V_{f} T_{f}^{c}
\end{aligned}
$$

$$
\text { note: } \frac{C_{v, m}}{R}=C \quad \text { (temperature change reversible adiabatic expansion, perfect gas) }
$$

## THERMOCHEMISTRY

## Adiabatic changes:

The change in pressure:

$$
\begin{aligned}
& \frac{P_{i} V_{i}}{P_{f} V_{f}}=\frac{T_{i}}{T_{f}} \Rightarrow \frac{T_{i}}{T_{f}}=\left(\frac{V_{f}}{V_{i}}\right)^{1 / c} \text { so } \quad \frac{P_{i}}{P_{f}}\left(\frac{V_{i}}{V_{f}}\right)^{(1 / c)+1}=1 \\
& \mathrm{C}_{\mathrm{p}, \mathrm{~m}}-\mathrm{C}_{\mathrm{v}, \mathrm{~m}}=\mathrm{R} \text { (perfect gas) }
\end{aligned}
$$

$$
\frac{1}{c}+c=\frac{1+c}{c}=\frac{\overbrace{R+C_{v, m}}^{C_{p, m}}}{C_{v, m}}=\frac{C_{p, m}}{C_{v, m}}=\gamma \text { Therefore } \quad \frac{P_{i}}{P_{f}}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=1 \quad \text { which rearranges to }
$$

$$
p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma} \quad \text { pressure change reversible adiabatic expansion, perfect gas }
$$

For a monoatomic gas, perfect gas $\quad C_{v, m}=\frac{3}{2} R \Rightarrow C_{p, m}=\frac{5}{2} R \quad \mathrm{C}_{\mathrm{p}, \mathrm{m}}-\mathrm{C}_{\mathrm{v}, \mathrm{m}}=\mathrm{R}$ so $\gamma=\frac{5}{2}$

## The Second and Third Laws

Entropy: It shows disorder and efficiency of a system
Entropy change expressed

$$
d S=\frac{d q_{r e v}}{T}
$$

$\mathrm{dq}_{\text {rev }}$ : energy transferred as heat reversibly to the system at the absolute temperature.
For a measurable change between two states $i$ and $f$, extensive property

$$
\begin{array}{r}
\Delta S=\int_{i}^{f} \frac{d q_{\text {rev }}}{T}\left(\frac{\text { Joule }}{\text { Kelvin }}\right) \quad \text { Molar entropy, intensive property } \\
S_{m}=\frac{S}{n}\left(\frac{J}{\mathrm{molK}}\right)
\end{array}
$$

