Introduction to Chemical Engineering Thermodynamics

8th Edition

By J.M. Smith and Hendrick Van Ness and Michael Abbott and Mark Swihart

ISBN10: 1259696529

ISBN13: 9781259696527

Copyright: 2018

- 1) Introduction
- 2) The First Law and Other Basic Concepts
- 3) Volumetric Properties of Pure Fluids
- 4) Heat Effects
- 5) The Second Law of Thermodynamics
- 6) Thermodynamic Properties of Fluids
- 7) Applications of Thermodynamics to Flow Processes
- 8) Production of Power from Heat

INTRODUCTION

Short reminders:

Dimensions and units of measures

Force and pressure

Temperature

Work and heat

Mechanical energy and its conservation.

The Scope of Thermodynamics: The science of thermodynamics was developed in the 19th century as a result of the need to describe the basic operating principles of the newly invented **steam engine** and to provide a basis for relating the work produced to the heat supplied.

From heat \rightarrow power; Steam engines \rightarrow Determining the principles From the study of steam engines (principles) \rightarrow Definition of The First and Second Laws of Thermodynamics.

The First and Second Laws of Thermodynamics -> Derivation of equations

Application to all branches of science and engineering.

INTRODUCTION

System: Application of thermodynamics to any real problem takes place on a "system" (space or body of matter).

Surroundings: Everything outside the system.

System (its state) → the macroscopic and the microscopic

The macroscopic

relates to quantities such as composition, density, temperature and pressure

The microscopic \rightarrow depends on the existence and behaviour of molecules, is not directly related to our sense perception (quantities cannot routinely be directly measured).

INTRODUCTION

Work:

Work is performed whenever a force acts through a distance.

$$dW = Fdl = PAd \frac{V}{A} = PdV$$
 integration yields

$$W = -\int_{V_1}^{V_2} P dV$$

Energy:

Kinetic Energy:
$$E_k = \frac{1}{2} m u^2$$

Potential Energy: $E_p = mzg$

INTRODUCTION

Energy Conservation

The work done on an accelerating body produces a change in its kinetic energy: As reported above;

$$W = \Delta E_{K} = \Delta \left(\frac{mu^{2}}{2}\right)$$

$$W = \Delta E_P = \Delta (mgz)$$

If an elevated body is allowed to fall freely (without friction or other resistance), it gains in kinetic energy what it loses in potential energy. Mathematically,

$$\Delta E_K + \Delta E_P = 0$$

$$\frac{mu_2^2}{2} - \frac{mu_1^2}{2} + mz_2g - mz_1g = 0$$