CEN 202 Thermodynamics

CHAPTER 3: Volumetric Properties of Pure Fluids

The Phase Rule
PVT Behaviour of Pure Substances

PV Diagram

PT diagram does not provide any information about volume. Figure 3.2 shows PV diagrams for a pure substance (a: solid/liquid and gas regions; b: liquid, liquid/vapour and vapour regions with isotherms).

Solid; Liquid; Vapour; Gas;
Critical point;
Fluid;
Subcooled-liquid; Superheated-vapour, Homogenous region, Heterogeneous region, Critical behaviour
T_{c} isotherm
P_{c} isobar
V_{c} isochore

CEN 202 Thermodynamics

Figure 3.2: PV diagrams for a pure substance. (a) Showing solid, liquid, and gas regions. (b) Showing liquid, liquid/vapor, and vapor regions with isotherms.

CEN 202 Thermodynamics

Single - Phase Regions
For the single phase regions, there is a unique relation connecting P, V and T. Expressed analytically $f(P, V, T)=0$, such a relation is known as a PVT equation of state (for example the ideal-gas state, $P V=R T$).

An equation of state may be solved for any one of the three quantities P, V, or T, given values for other two. For example, if V is considered a function of T and P, then $V=V(T, P)$ and

$$
d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P
$$

The partial derivatives in this equation have define physical meanings and are related to two properties, commonly tabulated for liquids, and defined as follows:

CEN 202 Thermodynamics

Volume expansivity: $\quad \beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$
Isothermal compressibility: $\kappa \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$
Combining these two equations; $\ln \frac{V_{2}}{V_{1}}=\beta\left(T_{2}-T_{1}\right)-\kappa\left(P_{2}-P_{1}\right)$

CEN 202 Thermodynamics

Ideal Gas and Ideal-Gas State

Ideal gases are hypothetical gases whose molecules occupy negligible space and have no interaction; consequently, they obeys the gas law exactly. The PVT behaviour of gases at moderate conditions of temperature and pressure is formulised by the gas law:

The equation; PV = RT (V: molar volume, R: universal constant).
Deviations become ever smaller as pressure decrease and temperature increases. This is an ideal gas and called ideal gas law (valid only for $\mathrm{P} \rightarrow 0$ and $\mathrm{T} \rightarrow$ infinity). The internal energy of a real gas depends on both P and T. In the absence of intermolecular forces, internal energy would depend T only.

- The equation of state: $P V^{i g}=$ RT (ig: ideal gas)
- Internal energy: $U^{i g}=U(T)$

CEN 202 Thermodynamics

Ideal Gas and Ideal-Gas State; Property Relations for the Ideal-Gas State

The definition of heat capacity at constant V (function of temperature ONLY),

$$
C_{V}^{i g} \equiv\left(\frac{\partial U^{i g}}{\partial T}\right)_{V}=\frac{d U^{i g}(T)}{d T}=C_{V}^{i g}(T)
$$

$$
H^{i g} \equiv U^{i g}+P V^{i g}=U^{i g}(T)+R T=H^{i g}(T) \quad \text { Heat capacity at constant } P
$$

(function of temperature ONLY),
$C_{P}^{i g} \equiv\left(\frac{\partial H^{i g}}{\partial T}\right)_{P}=\frac{d H^{i g}(T)}{d T}=C_{P}^{i g}(T)$
A useful relation between $C_{p}^{i g}$ and $C_{V}^{i g}$ for the ideal gas state comes from differentiation of

$$
C_{p}^{i g} \equiv \frac{d H^{i g}}{d T}=\frac{d U^{i g}}{d T}+R=C_{V}^{i g}+R
$$

From the equations above;

$$
\begin{aligned}
& d U^{i g}=C_{V}^{i g} d T \rightarrow \Delta U^{i g}=\int C_{V}^{i g} d T
\end{aligned} \begin{aligned}
& \text { Functions of temperature only, } \\
& \text { regardless of the kind of process }
\end{aligned}
$$

CEN 202 Thermodynamics

Process Calculations for the Ideal-Gas State

For ideal gas; $P=R T / V^{\text {ig }}$

$$
d Q=C_{V}^{i g} d T+R T \frac{d V^{i g}}{V^{i g}}
$$

$$
d W=-R T \frac{d V^{i g}}{V^{i g}}
$$

$$
d Q=C_{P}^{i g} d T-R T \frac{d P}{P}
$$

$$
d W=-R d T+R T \frac{d P}{P}
$$

