CEN 202 THERMODYNAMICS, VIRIAL EQUATIONS OF STATE

Two Forms of the Virial Equation

A useful auxiliary thermodynamic property is defined by the equation:

$$Z \equiv \frac{PV}{RT} = \frac{V}{V^{ig}}$$

This dimensionless ratio (Z) is called the compressibility factor. It is a measure of the deviation of the real-gas molar volume from its ideal-gas value.

For the ideal-gas state, Z = 1. At moderate temperatures its value is usually Z < 1, though at elevated temperatures it may be Z > 1.

$$PV = a = RT, Eq. PV = a (1 + B'P + C'P^2 + D'P^3 + ...)$$

becomes as below:

$$Z = 1 + B'P + C'P^2 + D'P^3 + ...$$

Text Book: : J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart. "INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS", EIGHTH EDITION. 2018

CEN 202 THERMODYNAMICS, VIRIAL EQUATIONS OF STATE

Two Forms of the Virial Equation

An alternative expression for Z is also in common use:

$$Z = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \cdots$$
 (remember; $P \propto \frac{1}{V}$)

Both of these equations are known as virial expansions, and the parameters B', C', D', etc., and B, C, D, etc., are called virial coefficients. Parameters B' and B are second virial coefficients; C' and C are third virial coefficients, and so on. For a given gas the virial coefficients are functions of temperature only.

Text Book: : J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart. "INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS", EIGHTH EDITION. 2018

CUBIC EQUATIONS OF STATE

Cubic equations are in fact the simplest equations capable of representing both liquid and vapor behavior.

The van der Waals Equation of State

The first practical cubic equation of state was proposed by J. D. van der Waals in 1873:

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$

Here, a and b are positive constants; when they are zero, the equation is PV=RT.

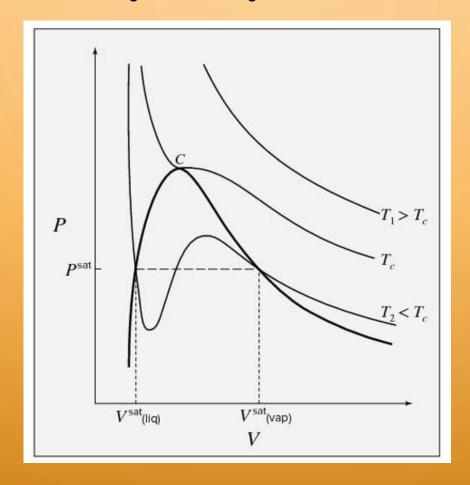
 $a/V^2 \rightarrow$ related to the attractive forces between molecules (pressure). $b \rightarrow$ related to the finite size of molecules (volume).

Given values of a and b for a particular fluid, one can calculate P as a function of V for various values of T. Figure 3.9 is a schematic PV diagram showing three such isotherms.

CUBIC EQUATIONS OF STATE

Given values of a and b for a particular fluid, one can calculate P as a function of V for various values of T.

The figure is a schematic PV diagram showing three such isotherms.



Text Book: : J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart. "INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS", EIGHTH EDITION. 2018

A GENERIC CUBIC EQUATION OF STATE

A mid-20th-century development of cubic equations of state was initiated in 1949 by publication of the Redlich/Kwong (RK) equation:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$

Subsequent enhancements have produced an important class of equations, represented by a generic cubic equation of state:

$$P = \frac{RT}{V - b} - \frac{a(T)}{(V + \varepsilon b)(V + \alpha b)}$$

The assignment of appropriate parameters leads not only to the van der Waals and the Redlich/Kwong (RK) equations, but also to the Soave/Redlich/Kwong (SRK) and the Peng/Robinson (PR) equations. For a given equation, ε and σ are pure numbers, the same for all substances, whereas parameters $\alpha(T)$ and δ are substance dependent. The temperature dependence of $\alpha(T)$ is specific to each equation of state. The SRK equation is identical to the RK equation, except for the T dependence of $\alpha(T)$.

Text Book: : J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart. "INTRODUCTION TO CHEMICAL ENGINEERING THERMODYNAMICS", EIGHTH EDITION. 2018