

MECHANISMS OF BACTERIAL PATHOGENICITY

Istar Dolapci, MD, PhD Medical Microbiology Department

CONTENTS (Description Headings)

A. Definitions

- B. Virulence Factors and Toxins
- C. Generalized Stages of Infection

Key Points

- General terms used in pathogenesis
- Koch's Postulates
- Virulence factors and its examples
- Mechanism of pathogenesis
- Transmission
- Adherence
- Invasion and inflammation
- Toxin production
- Immuno-pathogenesis
- Infection and its types

Disease

 Any deviation from a condition of good health and well-being

Infectious Disease

 A disease condition caused by the presence or growth of infectious microorganisms

Many properties that determine a microbe's pathogenicity or virulence are unclear or unknown But, when a microbe overpowers the hosts defenses, infectious disease results!

INTRODUCTION

- The relationship between a host and a pathogen is dynamic, since each modifies the activities and functions of the other
- The outcome of such a relationship depends on:
 - □ the virulence of the pathogen and
 - the relative degree of resistance or susceptibility of the host, mainly due to the effectiveness of the host defense mechanisms

Pathogenicity and Virulence

Pathogenicity

- The ability of a microbe to cause disease
 - This term is often used to describe or compare species

Virulence

- The degree of pathogenicity in a microorganism
 - This term is often used to describe or compare strains within a species

Pathogenesis is a multi-factorial process which depends on the;

- immune status of the host,
- the nature of the species or strain (virulence factors) and
- the number of organisms in the initial exposure

Pathogenicity

Determinants of pathogenesis

- Transmission
- Adhesion
- Invasion and inflammation
- Toxin production
- Immunopathogenesis

Bacterial pathogenesis

- Infection/entry
- Virulence factors
- Pathogenesis
- Escape of immune surveillance

The pathogenesis of bacterial infection includes initiation of the infectious process and the mechanisms that lead to the development of signs and symptoms of disease

Bacterial Virulence Mechanisms

- Adherence
- Invasion
- Byproducts of growth (gas, acid)
- Toxins
- Degradative enzymes
- Cytotoxic proteins
- Endotoxin

- Superantigen
- Induction of excess inflammation
- Evasion of phagocytic and immune clearance
- Capsule
- Resistance to antibiotics
- Intracellular growth

INNATE IMMUNE SYSTEM

Lysozyme in tears kills -Gram-positive bacteria

 0

MILLION

Mucus and cilia capture — organisms and remove them

Skin: physical barrier

Stomach acid kills – ingested pathogens

Fatty acids inhibit growth of many bacteria

Competition and toxic products from intestinal flora

Flushing action of ______

Low vaginal pH from lactobacilli _____ prevents colonization by pathogens

Whole body:

- Molecular and cellular defence
- Pattern recognition molecule e.g. TLRs
- Neutrophils
- Macrophages

NORMAL FLORA
NASOPHARYNX • Streptococci • Haemophilus • Neisseria • Mixed anaerobes • Candida • Actinomyces SKIN • Staphylococci • Streptococci • Corynebacteria • Proprionibacteria • Yeasts
 UPPER BOWEL • Enterobacteriaceae • Enterococci • <i>Candida</i>
LOWER BOWEL • Bacteroides • Bifidobacteria • Clostridium • Peptostreptococci VAGINA • Lactobacilli • Streptococci • Corynebacteria • Candida • Actinomyces

Exceptions to Koch's Postulates

Modification of Koch's postulates were necessary

- to establish disease etiology for viruses and bacteria, which cannot be grown on artificial media
- 2. Some diseases, e.g.: pneumonia and nephritis, may be caused by a variety of microbes.
- 3. Some pathogens, such as *S. pyogenes*, cause several different diseases.
- Certain pathogens, such as HIV, cause disease in humans only.

Molecular Koch's Postulates

Nucleic acid sequence of pathogen should be found in association with disease or diseased organ

Nucleic acid sequence should be absent from healthy individual

Resolution of disease should result in decrease in pathogen associated nucleic acid sequences

Presence of pathogenic nucleic acid in a healthy individual should predict development of disease

Nature of the microorganism inferred from nucleotide sequence should be consistent with biological characteristics of organism

Sequence based findings should be reproducible

Microbial mechanism of pathogenicity How microorganisms cause disease?

Infection/entry

- Ingestion (fecal-oral)
 - 🗆 Salmonella, Shigella, Vibrio, Clostridium etc..
- Inhalation (respiratory)
 - □ Mycobacterium, Mycoplasma, Chlamydia etc..
- Trauma (e.g. burn)
 - 🗆 Clostridium tetani
- Arthropod bite (zoonoses: mosquito, flea, tick)
 - 🗆 Rickettsia, Yersinia pestis, etc.
- Sexual transmission
 - 🗆 Neisseria gonorrboeae, HIV, Chlamydia, etc
- Iatrogenic (needle stick, blood transfusion)
 - 🗆 Staphylococcus, HIV, HBV
- Maternal-neonatal
 - □ HIV, HBV, Neisseria, etc.

© Elsevier. Murray: Medical Microbiology 5e - www.studentconsult.com

Body surfaces as sites of microbial infection and shedding. Green arrows indicate infection; purple arrows indicate shedding. (Redrawn from Mims C et al: Medical microbiology, London, 1993, Mosby-Wolfe.)

Number of Invading Microbes

- LD₅₀ Lethal Dose of a microbes toxin that will kill 50% of experimentally inoculated test animal
- ID₅₀ Infectious Dose required to cause disease in 50% of inoculated test animals
 - Example: ID₅₀ for Vibrio cholerea 10⁸ cells (100,000,000 cells)
 - □ ID₅₀ for Inhalation Anthrax 5,000 to 10,000 spores

For shigellosis less than 200 Shigella is enough; For diarrhea 10⁸ Vibrio cholerae are required...

Colonization / Infection

- Colonization occurs whenever any one or more species populate an area.
- Infection, the growth of a parasitic organism within the body. (e.g. Bacteria) (with or without any symptoms)

How do bacterial pathogens penetrate host defenses? Adherence

(The process or condition of attachment)

Mechanisms of Adherence to Cell or Tissue Surfaces

The mechanisms for adherence may involve two steps:

1. Nonspecific adherence: reversible attachment of the bacterium to the eukaryotic surface

□ Sometimes called "docking"

2. Specific adherence: irreversible permanent attachment of the microorganism to the surface

□ Sometimes called "anchoring"

Bacterial Adhesins

Binding sites: Adhesins & Fimbriae

Important: Surface hydrophobicity, net surface charge, binding molecules on bacteria and host cell receptor interactions

E. coli bacteria (green) on human bladder cells.

Bacteria adhering to human skin.

Examples of mechanisms of bacterial adherence to host-cell surfaces

Adhesins and ligands are usually on fimbriae

Neisseria gonorrhoeae Escherichia coli Bordetella pertussis

Bacteria have afimrial adhesins

Yersinia spp. Bordetella pertussis Mycoplasma pneumoniae

Why is adherence important ?

- Ability to colonize and cause disease
- Ability to adhere determines the host specificity
- Potential drug target

How is the microbe killed ?

Killing occurs by o₂ dependent & independent mechanisms & by both intracellular and extracellular mechanisms

Intracellular bacteria

INVASION

- The invasion of a host by a pathogen may be aided by the production of bacterial extracellular substances which act against the host by breaking down primary or secondary defenses of the body
- Medical microbiologists refer to these substances as invasins

Enzymes Hyaluronidase and Collagenase

Invasive bacteria reach epithelial surface. Bacteria produce hyaluronidase and collagenase. Bacteria invade deeper tissues.

Hyaluronidase: is present in Staphylococcus aureus (Skin infections) and Streptococcus pyogenes (Sore throat)

Collagenase: is present in Clostridium perfringens (gas gangrene)

Neuraminidase

It degrades neuraminic acid (also called sialic acid), an intercellular cement of the epithelial cells of the intestinal mucosa.

Streptokinase and staphylokinase

- They are produced by streptococci and staphylococci, respectively
- Kinase enzymes convert inactive plasminogen to plasmin which digests fibrin and prevents clotting of the blood
- The relative absence of fibrin in spreading bacterial lesions allows more rapid diffusion of the infectious bacteria

Enzymes

Phospholipases

It hydrolyzes phospholipids in cell membranes by removal of polar head groups

Lecithinases

It destroys lecithin (phosphatidylcholine) in cell membranes

Enzymes

Hemolysins

They destroy red blood cells and other cells (i.e., phagocytes) by lysis

Coagulase

Coagulase, formed by Staphylococcus aureus, is a cell associated and diffusible enzyme that converts fibrinogen to fibrin which causes clotting Strains that do not produce

Bacteria produce coagulase. Clot forms.

Bacteria later produce kinase, dissolving clot and releasing bacteria.

Strains that do not produce coagulase are not pathogenic

IgA protease

- An enzyme that can degrade IgA antibodies
 - eg. Haemophilus influenza (causes respiratory tract infection / meningitis)
- Helps overcome mucosal defenses

Some Extra Cellular Bacterial Proteins That Act As Invasins:

Invasin	Bacteria	Involved Activity
Hyaluronidase	Streptococci, staphylococci and clostridia	Degrades hyaluronic of connective tissue
Collagenase	Clostridium species	Dissolves collagen framework of muscles
Neuraminidase	Vibrio cholerae and Shigella dysenteriae	Degrades neuraminic acid of intestinal mucosa
Coagulase	Staphylococcus aureus	Converts fibrinogen to fibrin which causes clotting

Invasin	Bacteria	Involved Activity
Kinases	Staphylococci and streptococci	Converts plasminogen to plasmin which digests fibrin
Leukocidin	Staphylococcus aureus	Disrupts neutrophil membranes and causes discharge of lysosomal granules
Streptolysin	Streptococcus pyogenes	Repels phagocytes and disrupts phagocyte membrane and causes discharge of lysosomal granules
Hemolysins	Streptococci, staphylococci and clostridia	Phospholipases or lecithinases that destroy red blood cells (and other cells) by lysis
Lecithinases	Clostridium perfringens	Destroy lecithin in cell membranes

Invasin	Bacteria	Involved Activity
Phospholipases	Clostridium perfringens	Destroy phospholipids in cell membrane
Anthrax EF	Bacillus anthracis	One component (EF) is an adenylate cyclase which causes increased levels of intracellular cyclic AMP
Pertussis AC	Bordetella pertussis	One toxin component is an adenylate cyclase that acts locally producing an increase in intracellular cyclic AMP

EVASION STRATEGIES

Defense	Microbial strategy	Mechanism	Example
Wash-out	Bind to cell	Adhesins	Neisseria
	Inhibit ciliary activity	Ciliotoxic/ Ciliostatic molecule	Bordetella Streptococcus
Ingestion and killing by phagocyte	Disrupt chemotaxis	Leucocidins	Staphylococcus
	Inhibit phagocytosis	Capsule	Streptococcus
	Inhibit lysosomal fusion	Inhibitory molecule	Mycobacterium
	Multiply	Unknown	Listeria

EVASION STRATEGIES

Defense	Microbial strategy	Mechanism	Example
Restrict Fe- Lactoferrin Transferrin	Compete	Siderophore	Mycobacterium Escherichia
Activate complement	Interfere with alternative pathway	Fully sialylated surface	Neisseria
	Inactivate	Elastase	Pseudomonas
	Antigen projects beyond surface	Activation occurs at the wrong site	Gram-negatives
	Interfere with complement- mediated phagocytosis	C3b receptor competition, microbe and phagocyte	Streptococcus

Mechanisms for escaping host defences

Bacteria;

Bacteria that can evade or incapacitate the host defenses have a greater potential for causing diseases

- Evade recognition and killing by phagocytic cells
 Antiphagocytic factors
- Inactivate or evade the complement system and antibody
 - Antigenic heterogeneity
- Even grow inside cells to hide from host responses!
 - Intracellular pathogenicity
Microbial Evasion of Phagocytosis

Mechanism	Organisms
Inhibit adherence: M protein, capsules	Streptococcus pneumoniae, Streptococcus pyogenes
Kill phagocytes: Leukocidins	Staphylococcus aureus
Lyse phagocytes: Membrane attack complex	Listeria monocytogenes
Escape phagosome	Shigella spp.
Prevent phagosom-lysosome fusion	HIV
Survive in phagolysosome	Coxiella burnetti, Mycobacteria spp.

Antiphagocytic factors

For example;

- Staphylococcus aureus has surface protein A, which binds to the Fc portion of IgG
- Other pathogens such as Streptococcus pneumoniae or Neisseria meningitidis have surface factors that impede phagocytosis
- Many other bacteria have polysaccharide capsules

Avoidance of Phagocytosis

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Diplococcus Capsule

5 mm

Capsules are involved in avoidance of phagocyte-mediated recognition and attachment

Capsules contribute to pathogenesis

Capsule inhibits adherence of immune cells and resist phagocytosis (Nonpathogens may have capsule)

Antibiotics that work on capsule are formulated (It's easily destroyed if it's encapsulated)

How does the capsule help bacteria evade host defenses ?

Capsules allow escape of TLR recognition

Capsule inhibits phagocytosis

Capsule allows survival inside phagocytes

Capsule may help resist digestion by lysosomal enzymes

Encapsulated microorganisms

- Staphylococcus aureus
- Streptococcus
 pneumoniae
- Streptococcus pyogenes
- Streptococcus agalactiae
- Bacillus anthracis
- Bacillus subtilis
- Neisseria gonorrhoeae
- Neisseria meningitidis
- Haemophilus influenzea

- Escherichia coli
- Klebsiella pneumoniae
- Salmonella spp.
- Yersinia pestis
- Campylobacter fetus
- Pseudomonas aeruginosa
- Bacteroides fragilis
- Cryptococcus neoformans

Antiphagocytic factors

(waxy lipid, Antiphagocytic factors Lipid-Rich Cell Wall of Mycobacterium Mycolic acids D-arabinose and Arabinogalactan D-galactose mycolate layer N-acetylalucosamine and N-acetylmuramic acid Peptidoglycan-D-glutamic acid, layer m-diaminopimelic acid, L- and D-alanine to Por Stoped & orgel of a go of a go CMN Group: Unusual cell wall lipids (mycolic acids, etc.) Polypeptides (e.g., PPD) (Purified Protein Derivative) Mycolic acids (free lipids, glycolipids, peptidoglycolipids) Cytoplasm Cytoplasmic membranes

Intracellular pathogenicity

- Avoid entry into phagolysosomes
 Live within the cytosol of the phagocyte
- Prevent phagosome-lysosome fusion
 Live within the phagosome
- Resistant to lysosomal enzymes
 Survive within the phagolysosome

Examples of intracellular microorganisms

- Mycobacterium spp.
- Brucella spp.
- Francisella spp.
- Rickettsia spp.
- Chlamydia spp.

- Listeria monocytogenes
- Salmonella typhi
- Shigella dysenteriae
- Yersinia pestis
- Legionella pneumophila

Antigenic Variation

Some pathogens can alter their surface antigen to avoid immune system detection

When the host creates an immune response, the pathogen has an already altered antigen which is formed by an alternative gene activation

Mechanisms of Antigenic Variation

Туре	Example	Disease
High mutation rate	HIV Influenza	AIDS Influenza
Genetic reassortment	Influenza Rota virus	Influenza Diarrhea
Genetic rearrangement	Borrelia N.gonorrhoeae Plasmodium spp.	Lyme disease Urethritis Malaria
Large diversity of serotype	Rhinoviruses S.pneumoniae	Colds Pneumonia

Mechanisms of Bacterial Pathogenicity

- Toxigenesis: Ability to produce toxins
- Bacteria may produce two types of toxins:
- 1. Exotoxins and
- 2. Endotoxins
 - Exotoxins are released from bacterial cells and may act at tissue sites removed from the site of bacterial growth
 - Endotoxins are cell-associated substance (classic sense, endotoxin refers to the lipopolysaccharide component of the outer membrane of Gram-negative bacteria)

(a) Exotoxins are produced inside mostly gram-positive bacteria as part of their growth and metabolism. They are then released into the surrounding medium.

(b) Endotoxins are part of the outer portion of the cell wall (lipid A; see Figure 4.12c) of gram-negative bacteria. They are liberated when the bacteria die and the cell wall breaks apart.

© BENJAMIN/CUMMINGS

Endotoxins vs Exotoxins

Exotoxins	Endotoxins
Excreted by living cells	Integral part of the cell wall of gram negative bacteria
Produced by both gram positive and negative bacteria	Found only in gram negatives
Polypeptides	Lipopolysaccharide complexes
Relatively unstable	Relatively stable
Highly antigenic	Weakly immunogenic
Toxoids used as vaccines	No vaccine
Highly toxic	Moderately toxic
Usually bind to specific receptors on cells	Specific receptors not found on cells
Usually do not produce fever in the host	Induces TNF and IL1; produce fever
Frequently controlled by extrachromosomal genes	Synthesis directed by chromosomal genes 54

Exotoxins

A - B Toxins: Such toxins consist of two components. One binds to cell surfaces and the other passes into the cell membrane or cytoplasm where it acts (i.e. cholera and diphtheria toxins)

Examples of exotoxins produced by pathogenic bacteria

Microorganism	Disease	Toxin
Bacillus anthracis	Athrax	Anthrax toxin (EF) Lethal toxin
Bordetella pertussis	Pertussis	Adenylate cyclase toxin (pertussis AC)
Clostridium botulinum	Botulism	Botulinum toxin
Clostridium difficile	Pseudomembranous colitis	Enterotoxin
Clostridium	Gas gangrene	Alfa toxin
perfringens	Food poisoning	Enterotoxin
Clostridium tetani	Tetanus	Tetanospasmin
Corynebacterium diphteriae	Diphteriae	Diphteria toxin

Basic structure of endotoxin (lipopolysaccharide) from Gram-negative bacteria

© Elsevier. Murray: Medical Microbiology 5e - www.studentconsult.com

The many activities of lipopolysaccharide (LPS). This bacterial endotoxin activates almost every immune mechanism, as well as the clotting pathway, which together make LPS one of the most powerful immune stimuli known. DIC, Disseminated intravascular coagulation; IFN-γ interferon-γ; IgE, immunoglobulin E; IL-1, interleukin-1; PMN, polymorphonuclear (neutrophil) leukocytes; TNF, tumor necrosis factor. (Redrawn from Mims C et al: Medical microbiology, London, 1993, Mosby-Wolfe.)

Formation of bacterial biofilms

Quorum sensing: Ability to sense population density and alter gene expression

What triggers biofilm formation ?

- Bacterial attachment to surfaces
- Nutritional depletion
- Sub-inhibitory concentrations of antibiotics
- A critical population density of bacteria

How do biofilms help bacteria ?

- Protection from immune repsonse
- Protection from antibiotics
- Help tide over periods of low nutrition
- Microbial chatter (communication)

Biofilms: Why do they matter ?

- Key mechanism in bacterial pathogenesis
- Important part of food chain
- Major cause of corrosion of metal pipes

Modes of infectious disease transmission

- Contact transmission
 - Direct contact (person-to-person): syphilis, gonorrhoeae, herpes
 - □ Indirect contact (fomites): enterovirus infection, measles
 - □ Droplet (less than 1 meter): whooping cough, strep throat

Vehicle transmission

- Airborne: influenza, tuberculoses, chickenpox
- □ Water-borne (fecal-oral infection): cholera, diarrhea
- □ Food-borne: hepatitis, food poisoning, typhoid fever
- Vector transmission
 - Biological vectors: malaria, plaque, yellow fever
 - Mechanical vectors: E. coli diarrhea, salmonellosis

Transmission

 Specific bacterial species (or strains within a species) initiate infection after being transmitted by different routes to specific sites in the human body

Four major routes of transmission:

- 1. Skin i.e. through cuts or wounds
- 2. Gastro intestinal tract i.e. by ingestion of food or water
- 3. Respiratory tract i.e.in airborne droplets
- 4. Genital tract i.e. through sexual contact

Transmission

Disease can be directly transmitted in two ways:

- Horizontal disease transmission from one individual to another in the same generation (peers in the same age group)
 - Horizontal transmission can occur by either direct contact (licking, touching, biting) or indirect contact air - cough or sneeze (vectors or fomites that allow the transmission of disease without physical contact)
- Vertical disease transmission passing a disease causing agent vertically from parent to offspring,
 Such as perinatal transmission

Types of Infections (Diseases)

- Communicable Disease (Infection): An infection that can be transmitted from one individual to another either directly by contact or indirectly by fomites and vectors
- Noncommunicable Disease: A disease that is not transmitted from one individual to another

Types of Infections

Asymptomatic Infection:

- A disease is considered asymptomatic if a patient is a carrier for a disease or infection but experiences no symptoms.
- A condition might be asymptomatic if it fails to show the noticeable symptoms with which it is usually associated
- Also called subclinical infections. The term clinically silent is also used

Symptomatic Infection:

A disease is considered symptomatic if a patient is a carrier for a disease or infection and express symptoms . e.g. fever.

Types of Infections

Pandemic infection:

Pandemic is an epidemic of infectious disease that is spreading through human populations across a large region; for instance multiple continents, or even worldwide. e.g. HIV

Epidemic infection:

□ An epidemic occurs when new cases of a certain disease, in a given human population, and during a given period. e.g. Dengue

Endemic infection:

Endemic infection Prevalent in or restricted to a particular region, community, or group of people. e.g. cholera

Acute infection vs. chronic infection
 Acute Infection

 An infection characterized by sudden onset, rapid progression, and often with severe symptoms

Chronic Infection

An infection characterized by delayed onset and slow progression

- Primary infection vs. secondary infection
 Primary Infection
 - An infection that develops in an otherwise healthy individual
 - Secondary Infection
 - An infection that develops in an individual who is already infected with a different pathogen

Localized infection vs. systemic infection
 Localized Infection

An infection that is restricted to a specific location or region within the body of the host

Systemic Infection

An infection that has spread to several regions or areas in the body of the host

Clinical infection vs. subclinical infection
 Clinical Infection

An infection with obvious observable or detectable symptoms

Subclinical Infection

An infection with few or no obvious symptoms
Infection results in:

Opportunistic infection

An infection caused by microorganisms that are commonly found in the host's environment. This term is often used to refer to infections caused by organisms in the normal flora.

Infection results in:

Carrier state:

- A carrier state occurs when someone has been exposed to a pathogen (such as TB).
- A person may live as a carrier of a pathogen and would never know it
- Unless tested antibodies against the pathogen it lives in the host's body and can be passed on to others, without ever actually causing measurable harm to the host.

Latent state:

- \Box In a latent state, the virus is simply "at rest".
- Person infected with the pathogen will show signs of the disease, at some time in the individual's life.
- □ Common in many diseases,
- Complimented by the "lytic" or active state of the pathogen/disease.

THANKS FOR LISTENING ③

Ghiggueuneum

References

- Medical Microbiology; Murray, Rosenthal, Pfaller; 7th Ed; Elsevier Saunders; 2013
- Jawetz, Melnick & Adelberg's Medical Microbiology; Brooks G, Carroll KC, Butel J, Morse S (Eds); 27th Ed; McGraw Hill Lange; 2016
- Sherris Medical Microbiology; 6th Ed; Ryan KJ, Ray CG; McGraw Hill Education; 2014