

KLEBSIELLA PNEUMONIAE & other gram-negative bacterial causes of respiratory system

Istar Dolapci, MD, PhD

Ankara University School of Medicine Department of Medical Microbiology

Learning Objectives

- List the most common etiologic agents responsible for respiratory disease and pneumonia in patients
- Describe the gram-negative bacterial causes of respiratory system:
 - Enterobacteriaceae (Klebsiella spp.)
 - Pseudomonas spp.
 - □ Acinetobacter spp.
- Describe the virulence factors found in bacteria associated with infection of the respiratory tract

CONTENTS (Description Headings)

- Enterobacteriaceae (Klebsiella spp.)
- Pseudomonas spp.
- Acinetobacter spp.
 - Physiology and Structure
 - Pathogenesis and Immunity
 - Epidemiology
 - Laboratory diagnosis
 - Treatment, prevention & control

Organisms Present in the Nasopharynx and Oropharynx of Healthy Humans

Possible Pathogens			
Acinetobacter spp.	Moraxella catarrhalis	Eikenella corrodens	
Viridans streptococci, including Streptococcus anginosus group	Candida albicans	Bacteroides spp.	
Beta-hemolytic streptococci	Herpes simplex virus	Peptostreptococcus spp.	
Streptococcus pneumoniae	Enterobacteriaceae	Actinomyces spp.	
Staphylococcus aureus	Mycobacterium spp.	Capnocytophaga spp.	
Neisseria meningitidis	Pseudomonas spp.	Actinobacillus spp.	
<i>Mycoplasma</i> spp.	Burkholderia cepacia	Aggregatibacter aphrophilus	
Haemophilus influenzae	Filamentous fungi	Entamoeba gingivalis	
Haemophilus parainfluenzae	Klebsiella spp.	Trichomonas tenax	

Definite Respiratory Tract Pathogens

Respiratory Tract Pathogens			
Corynebacterium diphtheriae (toxin- producing)	Pneumocystis jiroveci	Coronaviruses	
Mycobacterium tuberculosis	<i>Nocardia</i> spp.	Human metapneumovirus	
Mycoplasma pneumoniae	Histoplasma capsulatum	Adenoviruses	
Chlamydia trachomatis	Coccidioides immitis	Enteroviruses	
Chlamydia pneumoniae	<i>Cryptococcus neoformans</i> (may also be recovered from patients without disease)	Hantavirus	
Bordetella pertussis	Blastomyces dermatitidis	Herpes simplex virus	
<i>Legionella</i> spp.	Respiratory syncytial virus & Rhinoviruses	Influenza and parainfluenza virus	

Enterobacteriaceae

 Largest, most heterogeneous collection of medically important gram negative rods

Fifty genera and hundreds of species and subspecies

- Biochemical properties
- □ Antigenic structure
- □ DNA–DNA hybridization
- □ 16S rRNA sequencing

Common Medically Important Enterobacteriaceae

- Citrobacter freundii, Citrobacter koseri
- Enterobacter aerogenes, Enterobacter cloacae
- Escherichia coli
- Klebsiella pneumoniae, Klebsiella oxytoca
- Morganella morganii

- Proteus mirabilis
- Salmonella enterica
- Serratia marcescens
- Shigella sonnei, Shigella flexneri
- Yersinia pestis, Yersinia enterocolitica, Yersinia pseudotuberculosis

Enterobacteriaceae

Worldwide

- in soil, water, and vegetation and are part of the normal intestinal flora of humans
- Some of them are always associated with human disease
 - e.g., Salmonella serotype Typhi, Shigella species, Yersinia pestis
- Others are members of the normal commensal flora
 - □ e.g., Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis
 - □ that can cause opportunistic infections

Enterobacteriaceae

- Facultative anaerobes
- Grow rapidly
 - □ with simple nutritional requirements
 - on nonselective (e.g., blood agar) and selective (e.g., MacConkey agar) media
- Ferment glucose
- Reduce nitrate
- Catalase positive
- Oxidase negative
 - Important! It is used to distinguish the Enterobacteriaceae from many other fermentative and nonfermentative gram-negative rods

Differentiation of common members of the **Enterobacteriaceae**

According to the appearance on culture media

The ability to ferment lactose

Lactose-fermenting strains

- e.g., Escherichia, Klebsiella,
 Enterobacter, Citrobacter, and
 Serratia
- pink-purple colonies on MacConkey agar
- Non-lactose-fermenting strains
 - e.g., Proteus, Salmonella, Shigella, and Yersinia spp
 - colorless colonies on MacConkey agar

https://commons.wikimedia.org/wiki/File:MacConkey_agar_with_LF_and_LF_colonies.jpg

Differentiation of common members of the Enterobacteriaceae

According to the appearance on culture media

- Mucoid (wet, viscous) colonies
 - Encapsulated bacteria
 - e.g., most Klebsiella, some Enterobacter and Escherichia strains
- Smooth colonies
 - Non-encapsulated bacteria

https://www.microbiologyinpictures.com/bacteria%20photos/kleb siella%20pneumoniae%20photos/KLPN3.html

Differentiation of common members of the Enterobacteriaceae

Motile with peritrichous flagella Non-motile e.g., Klebsiella, Shigella, Yersinia

https://www.jlindquist.com/generalmicro/dfmotility.html

Differentiation of common members of the Enterobacteriaceae According to the serologic classification

Somatic O polysaccharides

- □ Strain specific
- Cross reactions common
- K antigens in the capsule (type-specific polysaccharides)
 - Encapsulated strains
- H proteins in the bacterial flagella
 - □ Motile strains

The antigens are detected by agglutination with specific antibodies

Common Virulence Factors Associated with Enterobacteriaceae

- Endotoxin
- Capsule
- Antigenic phase variation
- Type III secretion systems
- Sequestration of growth factors
- Resistance to serum killing
- Antimicrobial resistance

Klebsiella pneumoniae & Klebsiella oxytoca

- Causative agents of community- or hospitalacquired primary lobar pneumonia
 - $\hfill\square$ the necrotic destruction of alveolar spaces
 - formation of cavities
 - production of blood-tinged sputum

https://www.vcuthoracicimagin g.com/Historyanswer.aspx?qi d=13&fid=1

LABORATORY DIAGNOSIS

Microscopy

Klebsiella: Gramnegative, non-motile, encapsulated, rod shaped bacterium

Gram staining is not significant for the presumptive identification

Culture

5% sheep blood, chocolate, and MacConkey agars (24 hours at 35°C)

Identification

- IMViC tests
- Commercial identification systems
- □ MALDI-TOF MS

http://www.bacteriainphotos.com/Kl ebsiella%20pneumoniae%20on%20 MacConkey.html

TREATMENT

- Must be guided by in vitro susceptibility test results and clinical experience
- K. pneumoniae are resistant to ampicillin
 Multiple antibiotic resistance patterns from the acquisition of multidrug-resistant plasmids with enzymes such as carbapenemase and cephalosporinases

Pseudomonas and related bacteria

Nonfermentative rods

- □ Opportunistic pathogens of plants, animals, and humans
- Most clinically significant isolates are members of five genera:
- 1. Pseudomonas,
- 2. Burkholderia,
- 3. Stenotrophomonas,
- 4. Acinetobacter, and
- 5. Moraxella

Pseudomonas spp. & Acinetobacter spp.

- Nonfermentative, gram negative rods
- Opportunistic pathogens of plants, animals, and humans
 - □ They can cause infections in the respiratory tract
 - Asymptomatic colonization
 - Tracheobronchitis
 - Bronchopneumonia

- Pseudomonas aeruginosa is the most important species
 - □ broad environmental distribution
 - hospital environment in moist reservoirs
 - □ simple growth requirements
 - some strains can even grow in distilled water
 - possess many enzymes and toxins
 - resistant to most commonly used antibiotics
 - □ infections are primarily opportunistic!

Physiology and Structure

- Usually motile
- Straight or slightly curved
- Gram-negative rod
- Obligate aerobe
- Cytochrome oxidase (+)
 - detected in a rapid, 5-minute test
- Some strains appear mucoid
- □ Some species produce diffusible pigments
 - e.g., pyocyanin [blue], pyoverdin [yellow-green], pyorubin [reddishbrown]

Pathogenesis and Immunity

- Virulence factors
- Adhesins
 Flagella
 Pili
 Lipopolysaccharide (LPS) ______ responsible for endotoxin activity
 Alginate
 protects from phagocytosis and antibiotic killing

Pseudomonas spp. Pathogenesis and Immunity

□ Virulence factors — Toxins

- The type III secretion system, is particularly effective in injecting toxins into the host cell
- Exotoxin A (ETA)

disrupts protein synthesis by blocking peptide chain elongation

Exoenzymes S and T

Pathogenesis and Immunity

- Virulence factors Enzymes
 - Pyocyanin
 - catalyzes the production of superoxide and hydrogen peroxide
 - Pyoverdin
 - □ binds iron for use in metabolism
 - LasA (serine protease) & LasB (zinc metalloprotease)
 degrade elastin, resulting in damage to elastin-containing tissues
 - Alkaline protease
 - contributes to tissue destruction
 - Phospholipase C
 - breaks down lipids and lecithin

LABORATORY DIAGNOSIS (P. aeruginosa)

Microscopy

Thin, gram-negative rods arranged singly and in pairs
 not pathognomonic

Culture

□ 5% sheep blood, chocolate, and MacConkey agars

require aerobic incubation

http://www.antimicrobe.org/ClinicMicro/Pseudomonas%20aerug1.htm

HansN.

LABORATORY DIAGNOSIS (*P. aeruginosa*)

Identification

- grows rapidly
- flat colonies with a spreading border
- β-hemolysis
- green pigmentation (pyocyanin)
- yellow-green pigments (pyoverdin)
- sweet, grapelike odor
- oxidase positive
- non-lactose fermenting

https://www.sciencedirect.com/topics/medicineand-dentistry/pseudomonas

-built-sets-based FD4150776

TREATMENT

Frustrating !

□ Typically resistant to most antibiotics

http://www.antimicrobe.org/ClinicMicro/Pseudomonas%20aerug1.htm

Acinetobacter spp.

- Strictly aerobic
- Oxidase-negative
- Gram-negative coccobacilli
- Ubiquitous saprophytes
 - □ able to survive on moist surfaces
 - such as mechanical ventilation equipment
 - □ able to survive on dry surfaces
 - such as human skin
- Part of the normal oropharyngeal flora

Acinetobacter spp.

- Glucose-oxidizing species
 A. baumannii is the most common
- Glucose nonoxidizing species
 A. Iwoffii and A. haemolyticus are the most common

Acinetobacter spp.

Opportunistic pathogens

respiratory tract, urinary tract, and wound infections, and septicemia

Risk factors:

- receiving broad-spectrum antibiotics
- recovering from surgery
- on respiratory ventilation
- Significant problem: Nosocomial pulmonary infections in hospitalized patients
 - many of the infections are caused by strains resistant to most antibiotics
 - □ specific therapy must be guided by in vitro susceptibility tests

LABORATORY DIAGNOSIS (A. baumannii)

Microscopy

Plump, gram-negative coccobacilli that tent to resist alcohol decolorization

may be mistaken for Neisseria spp.

https://www.uaz.edu.mx/histo/pathology/ed/ch_9b/path/scan12.gif

LABORATORY DIAGNOSIS

(A. baumannii)

Culture

- 5% sheep blood, chocolate, and MacConkey agars
 - at 35°C to 37°C in aerobic conditions or 5% carbon dioxide, 24 hours
- Smooth round, non-hemolytic colonies on blood agar
- Non-lactose fermenters on MacConkey agar
 - colonies exhibit a purplish hue that may cause the organism to be mistaken for lactose-fermenter

http://www.do-super.com.tw/ClinicMicro/Acinetobacter1.htm http://universe84a.com/collection/acinetobacter-macconkey-agar/

LABORATORY DIAGNOSIS (A. baumannii)

Identification

Some commercial systems
 Automated identification systems
 Sequence-based methods

✓ Oxidase negative✓ Indole negative

Oxidase Test

https://microbiologyinfo.com/indole-test-principle-reagentsprocedure-result-interpretation-and-limitations/ https://onlinesciencenotes.com/oxidase-test-by-kovacs-methodprinciple-procedure-result-interpretation-and-precautions/

References

- Medical Microbiology; Murray, Rosenthal, Pfaller; 7th Ed; Elsevier Saunders; 2013
- Jawetz, Melnick & Adelberg's Medical Microbiology; Brooks G, Carroll KC, Butel J, Morse S (Eds); 27th Ed; McGraw Hill Lange; 2016
- Sherris Medical Microbiology; 6th Ed; Ryan KJ, Ray CG; McGraw Hill Education; 2014

THANKS FOR LISTENING ③

guidamanna com