Lecture 6: Spanning Set \& Linear Independency

Elif Tan

Ankara University

Spanning Set \& Linear Independency

Definition (Linear Combination)

Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in (V, \oplus, \odot) a vector space. A vector $v \in V$ is called a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$ if

$$
v=c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{k} \odot v_{k}
$$

for the scalars $c_{1}, c_{2}, \ldots, c_{k}$.

Spanning Set \& Linear Independency

Definition (Spannig Set)

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vectors in a vector space V. Then the set of all vectors in V that are linear combinations of the vectors in S is denoted by SpanS, that is,

$$
\text { SpanS }=\left\{c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{k} \odot v_{k} \mid c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

If every vector in V is a linear combination of the vectors in S, the set S is said to span V and denoted by $\operatorname{SpanS}=V$.

Theorem

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a set of vectors in a vector space V. Then SpanS $<V$.

Note that a vector space may have many spanning sets.

Spanning Set \& Linear Independency

To determine whether a vector v of V is in SpanS, we investigate the consistency of the corresponding linear system.

Example

Let $V:=\mathbb{R}^{3}$, consider the vectors
$v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right], v_{3}=\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right]$.
Determine whether Span $\left\{v_{1}, v_{2}, v_{3}\right\}=V$.
Solution: Let $v:=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be an arbitrary vector in \mathbb{R}^{3}. If we find the scalars c_{1}, c_{2}, and c_{2} such that $v=c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus c_{3} \odot v_{3}$, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans \mathbb{R}^{3}.

Spanning Set \& Linear Independency

The corresponding linear system is

$$
\begin{aligned}
c_{1}+2 c_{2}+3 c_{3} & =a \\
2 c_{1}+c_{2}-3 c_{3} & =b \\
c_{1}-c_{2}+c_{3} & =c .
\end{aligned}
$$

If we transform the augmented matrix to the reduced row echelon form, we obtain

$$
\begin{aligned}
& c_{1}=(19 a-5 b-9 c) / 21 \\
& c_{2}=(5 a+2 b-9 c) / 21 \\
& c_{3}=(a-b+c) / 7
\end{aligned}
$$

which indicates the corresponding linear system is consistent. Thus, $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}=V$.

Spanning Set \& Linear Independency

Definition (Linear independency)

The vectors $v_{1}, v_{2}, \ldots, v_{k}$ in a vector space (V, \oplus, \odot) are said to be linearly independent if there exist scalars $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, such that

$$
c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{k} \odot v_{k}=0
$$

The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are called linealy independent if $c_{1}=c_{2}=\cdots=c_{k}=0$ such that

$$
c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{k} \odot v_{k}=0
$$

Spanning Set \& Linear Independency

To determine whether a set of vectors is linearly independent or linarly dependent, we investigate the nontrivial (nonzero) solution of the corresponding homogenous linear system. If the system has a nontrivial solution, then the vectors are linearly dependent. If the system has only trivial (zero) solution, then the vectors are linearly independent.

Spanning Set \& Linear Independency

Example

Determine whether the vectors $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right], v_{3}=\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right]$ are linearly independent.

Solution: The corresponding homogenous linear system is

$$
\begin{aligned}
c_{1}+2 c_{2}+3 c_{3} & =0 \\
2 c_{1}+c_{2}-3 c_{3} & =0 \\
c_{1}-c_{2}+c_{3} & =0
\end{aligned}
$$

If we transform the augmented matrix to the reduced row echelon form, we obtain $c_{1}=c_{2}=c_{3}=0$ which indicates the linear system has only zero solution. Thus the vectors are linearly independent.

Spanning Set \& Linear Independency

Theorem

Let $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of vectors in a vector space \mathbb{R}^{n}. Let A be the matrix whose columns are the elements of S. Then S is linearly independent if and only if $\operatorname{det}(A) \neq 0$.

Example

From the former example, since

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3 \\
1 & -1 & 1
\end{array}\right] \approx \cdots \approx I_{3}
$$

then $\operatorname{det}(A) \neq 0$ which indicates the vectors are linearly independent.

Spanning Set \& Linear Independency

Theorem

(1) Let S_{1} and S_{2} be finite subset of a vector space V and $S_{1} \subset S_{2}$. Then
(i) S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
(ii) S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.

Spanning Set \& Linear Independency

Theorem

(1) Let S_{1} and S_{2} be finite subset of a vector space V and $S_{1} \subset S_{2}$. Then
(i) S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
(ii) S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.
(2) If S is any set of vectors that contains 0 , then S is linearly dependent.

Spanning Set \& Linear Independency

Theorem

(1) Let S_{1} and S_{2} be finite subset of a vector space V and $S_{1} \subset S_{2}$. Then
(i) S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
(ii) S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.
(2) If S is any set of vectors that contains 0 , then S is linearly dependent.
(3) If S consists of a single nonzero vector, then S is linearly independent.

Spanning Set \& Linear Independency

Theorem

(1) Let S_{1} and S_{2} be finite subset of a vector space V and $S_{1} \subset S_{2}$. Then
(i) S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
(ii) S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.
(2) If S is any set of vectors that contains 0 , then S is linearly dependent.
(3) If S consists of a single nonzero vector, then S is linearly independent.
(9) If $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent, then the vectors $v_{1}, v_{2}, \ldots, v_{k}$ must be distinct and nonzero.

Spanning Set \& Linear Independency

Theorem

(1) Let S_{1} and S_{2} be finite subset of a vector space V and $S_{1} \subset S_{2}$. Then
(i) S_{1} is linearly dependent $\Rightarrow S_{2}$ is linearly dependent
(ii) S_{2} is linearly independent $\Rightarrow S_{1}$ is linearly independent.
(2) If S is any set of vectors that contains 0 , then S is linearly dependent.
(3) If S consists of a single nonzero vector, then S is linearly independent.
(1) If $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent, then the vectors $v_{1}, v_{2}, \ldots, v_{k}$ must be distinct and nonzero.
(6) Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ spans a vector space V and v_{j} is a linear combination of the preceding vectors in S. Then the set $S-\left\{v_{j}\right\}$ also spans V.

