Lecture 6: Spanning Set & Linear Independency

Elif Tan

Ankara University

.∋...>

Definition (Linear Combination)

Let $v_1, v_2, ..., v_k$ be vectors in (V, \oplus, \odot) a vector space. A vector $v \in V$ is called a linear combination of $v_1, v_2, ..., v_k$ if

$$v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k$$
,

for the scalars c_1, c_2, \ldots, c_k .

Definition (Spannig Set)

Let $S = \{v_1, v_2, ..., v_k\}$ be a set of vectors in a vector space V. Then the set of all vectors in V that are linear combinations of the vectors in S is denoted by SpanS, that is,

$$\mathsf{SpanS} = \{ \mathsf{c}_1 \odot \mathsf{v}_1 \oplus \mathsf{c}_2 \odot \mathsf{v}_2 \oplus \ldots \oplus \mathsf{c}_k \odot \mathsf{v}_k \mid \mathsf{c}_1, \mathsf{c}_2, ..., \mathsf{c}_k \in \mathbb{R} \}$$
 .

If every vector in V is a linear combination of the vectors in S, the set S is said to span V and denoted by SpanS = V.

Theorem

Let $S = \{v_1, v_2, ..., v_k\}$ be a set of vectors in a vector space V. Then SpanS < V.

Note that a vector space may have many spanning sets.

イロト イポト イヨト イヨト

To determine whether a vector v of V is in SpanS, we investigate the consistency of the corresponding linear system.

Example

Let
$$V := \mathbb{R}^3$$
, consider the vectors
 $v_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3\\-3\\1 \end{bmatrix}$.
Determine whether $Span \{v_1, v_2, v_3\} = V$.

Solution: Let $v := \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ be an arbitrary vector in \mathbb{R}^3 . If we find the scalars c_1, c_2 , and c_2 such that $v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3$, then the set $\{v_1, v_2, v_3\}$ spans \mathbb{R}^3 .

Spanning Set & Linear Independency

The corresponding linear system is

$$c_1 + 2c_2 + 3c_3 = a$$

$$2c_1 + c_2 - 3c_3 = b$$

$$c_1 - c_2 + c_3 = c.$$

If we transform the augmented matrix to the reduced row echelon form, we obtain

$$c_{1} = (19a - 5b - 9c) / 21$$

$$c_{2} = (5a + 2b - 9c) / 21$$

$$c_{3} = (a - b + c) / 7$$

which indicates the corresponding linear system is consistent. Thus, Span $\{v_1, v_2, v_3\} = V$.

A B K A B K

Definition (Linear independency)

The vectors $v_1, v_2, ..., v_k$ in a vector space (V, \oplus, \odot) are said to be *linearly independent* if there exist scalars $c_1, c_2, ..., c_k$, not all zero, such that

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k = 0.$$

The vectors $v_1, v_2, ..., v_k$ are called linealy independent if $c_1 = c_2 = \cdots = c_k = 0$ such that

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k = 0.$$

To determine whether a set of vectors is linearly independent or linarly dependent, we investigate the nontrivial (nonzero) solution of the corresponding homogenous linear system. If the system has a nontrivial solution, then the vectors are linearly dependent. If the system has only trivial (zero) solution, then the vectors are linearly independent.

Spanning Set & Linear Independency

Example

Determine whether the vectors
$$v_1 = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 3\\ -3\\ 1 \end{bmatrix}$ are linearly independent.

Solution: The corresponding homogenous linear system is

$$c_1 + 2c_2 + 3c_3 = 0$$

$$2c_1 + c_2 - 3c_3 = 0$$

$$c_1 - c_2 + c_3 = 0.$$

If we transform the augmented matrix to the reduced row echelon form, we obtain $c_1 = c_2 = c_3 = 0$ which indicates the linear system has only zero solution. Thus the vectors are linearly independent.

Let $S = \{v_1, v_2, ..., v_n\}$ be a set of vectors in a vector space \mathbb{R}^n . Let A be the matrix whose columns are the elements of S. Then S is linearly independent if and only if det $(A) \neq 0$.

Example

From the former example, since

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix} \approx \cdots \approx I_3,$$

then det $(A) \neq 0$ which indicates the vectors are linearly independent.

() Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then

- (i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent
- (ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.

() Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then

(i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent

(ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.

If S is any set of vectors that contains 0, then S is linearly dependent.

() Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then

(i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent

(ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.

2 If *S* is any set of vectors that contains 0, then *S* is linearly dependent.

If S consists of a single nonzero vector, then S is linearly independent.

- **(**) Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then
 - (i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent
 - (ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.
- If S is any set of vectors that contains 0, then S is linearly dependent.
- If S consists of a single nonzero vector, then S is linearly independent.
- If S = {v₁, v₂, ..., v_k} is linearly independent, then the vectors v₁, v₂, ..., v_k must be distinct and nonzero.

- **(**) Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then
 - (i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent
 - (ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.
- **2** If S is any set of vectors that contains 0, then S is linearly dependent.
- If S consists of a single nonzero vector, then S is linearly independent.
- If S = {v₁, v₂, ..., v_k} is linearly independent, then the vectors v₁, v₂, ..., v_k must be distinct and nonzero.
- Let S = {v₁, v₂, ..., v_k} spans a vector space V and v_j is a linear combination of the preceding vectors in S. Then the set S {v_j} also spans V.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >