Lecture 7: Basis and Dimension

Elif Tan

Ankara University

æ

≣▶ ∢ ≣≯

Definition

Basis: Let $v_1, v_2, ..., v_k$ be vectors in a vector space (V, \oplus, \odot) . The vectors $v_1, v_2, ..., v_k$ are said to form a basis for V if (*i*) Span $\{v_1, v_2, ..., v_k\} = V$ (*ii*) $\{v_1, v_2, ..., v_k\}$ is linerly independent. **Dimension:** The number of vectors in a basis for the vector space V is called as a dimension of V (dimV). The dimension of the zero vector space $\{0\}$ is defined as zero.

A vector space can have many different basis but the dimension of the vector space is always same.

Example

$$S := \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ is a basis (standard basis) for the vector space } (\mathbb{R}^3, \oplus, \odot) \text{ and } \dim \mathbb{R}^3 = 3.$$

Generally, the standard basis for the vector space \mathbb{R}^n is defined by $S = \{e_1, e_2, ..., e_n\}$, where e_j is an $n \times 1$ matrix whose *j*-th row is 1 and zero elsewhere.

æ

メロト メポト メヨト メヨト

If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every vector in V can be written uniquely as a linear combination of the vectors in S.

소리가 소聞가 소문가 소문가 ...

Let $V = \mathbb{R}^m$, $S = \{v_1, v_2, ..., v_n\}$, $(n \ge m)$ be a set of nonzero vectors in V and SpanS = W. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:

• Form equation $c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_n \odot v_n = 0$

Let $V = \mathbb{R}^m$, $S = \{v_1, v_2, ..., v_n\}$, $(n \ge m)$ be a set of nonzero vectors in V and SpanS = W. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:

- Form equation $c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_n \odot v_n = 0$
- Construct the augmented matrix associated with the corresponding homogenous linear system and transform it to the reduced row echelon form.

Let $V = \mathbb{R}^m$, $S = \{v_1, v_2, ..., v_n\}$, $(n \ge m)$ be a set of nonzero vectors in V and SpanS = W. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:

- Form equation $c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_n \odot v_n = 0$
- Construct the augmented matrix associated with the corresponding homogenous linear system and transform it to the reduced row echelon form.
- The vectors corresponding to the columns containing the leading 1's form a basis for W.

Basis and Dimension

Example

$$V := \mathbb{R}^{3},$$

$$S :=$$

$$\begin{cases}
v_{1} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, v_{2} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, v_{3} = \begin{bmatrix} 3\\-3\\1 \end{bmatrix}, v_{4} = \begin{bmatrix} -1\\7\\1 \end{bmatrix}, v_{5} = \begin{bmatrix} 5\\-2\\0 \end{bmatrix}$$
It is easy to show that $SpanS = V$. Find a subset of S that is a basis for \mathbb{R}^{3} .

Solution:

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3 \oplus c_4 \odot v_4 \oplus c_5 \odot v_5 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 3 & -1 & 5 \\ 2 & 1 & -3 & 7 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{bmatrix} \approx \dots \approx \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}.$$

Then, the leading 1's appears in columns 1,2,3, so $\{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 .

Elif Tan (Ankara University)

æ

イロト イヨト イヨト イヨト

• If $S = \{v_1, v_2, ..., v_n\}$ is a basis for V and $W = \{w_1, w_2, ..., w_r\}$ is a linearly independent set of vectors in $V \Rightarrow r \le n$.

- If $S = \{v_1, v_2, ..., v_n\}$ is a basis for V and $W = \{w_1, w_2, ..., w_r\}$ is a linearly independent set of vectors in $V \Rightarrow r \le n$.
- ② If $S = \{v_1, v_2, ..., v_n\}$ is a basis for *V* and *U* = {*u*₁, *u*₂, ..., *u_m*} spans *V* ⇒ *m* ≥ *n*.

- If $S = \{v_1, v_2, ..., v_n\}$ is a basis for V and $W = \{w_1, w_2, ..., w_r\}$ is a linearly independent set of vectors in $V \Rightarrow r \le n$.
- ② If $S = \{v_1, v_2, ..., v_n\}$ is a basis for *V* and *U* = {*u*₁, *u*₂, ..., *u_m*} spans *V* ⇒ *m* ≥ *n*.
- Solution V be an n-dimensional vector space. If S = {v₁, v₂, ..., v_n} is linearly independent set of V ⇒ S is a basis for V.

- If S = {v₁, v₂, ..., v_n} is a basis for V and W = {w₁, w₂, ..., w_r} is a linearly independent set of vectors in V ⇒ r ≤ n.
- ② If $S = \{v_1, v_2, ..., v_n\}$ is a basis for *V* and *U* = {*u*₁, *u*₂, ..., *u_m*} spans *V* ⇒ *m* ≥ *n*.
- Solution V be an n-dimensional vector space. If S = {v₁, v₂, ..., v_n} is linearly independent set of V ⇒ S is a basis for V.
- Let V be an n-dimensional vector space. If S = {v₁, v₂, ..., v_n} spans V ⇒ S is a basis for V.

Example

$$V := \mathbb{R}^{3},$$

$$S := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-3\\1 \end{bmatrix}, \begin{bmatrix} -1\\7\\1 \end{bmatrix}, \begin{bmatrix} 5\\-2\\0 \end{bmatrix} \right\}.$$

$$SpanS = V.$$
 From the above theorem S is not a basis for $\mathbb{R}^{3}.$

æ

* ロ > * 個 > * 注 > * 注 >