Lecture 7: Basis and Dimension

Elif Tan

Ankara University

Basis and Dimension

Definition

Basis: Let $v_{1}, v_{2}, \ldots, v_{k}$ be vectors in a vector space (V, \oplus, \odot). The vectors $v_{1}, v_{2}, \ldots, v_{k}$ are said to form a basis for V if
(i) $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}=V$
(ii) $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linerly independent.

Dimension: The number of vectors in a basis for the vector space V is called as a dimension of $V(\operatorname{dim} V)$. The dimension of the zero vector space $\{0\}$ is defined as zero.

A vector space can have many different basis but the dimension of the vector space is always same.

Basis and Dimension

Example

$S:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis (standard basis) for the vector
space $\left(\mathbb{R}^{3}, \oplus, \odot\right)$ and $\operatorname{dim} \mathbb{R}^{3}=3$.
Generally, the standard basis for the vector space \mathbb{R}^{n} is defined by
$S=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, where e_{j} is an $n \times 1$ matrix whose j-th row is 1 and zero elsewhere.

Basis and Dimension

Theorem
If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then every vector in V can be written uniquely as a linear combination of the vectors in S.

Basis and Dimension

Theorem

Let $V=\mathbb{R}^{m}, S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},(n \geq m)$ be a set of nonzero vectors in V and SpanS $=W$. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:
(1) Form equation $c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{n} \odot v_{n}=0$

Basis and Dimension

Theorem

Let $V=\mathbb{R}^{m}, S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},(n \geq m)$ be a set of nonzero vectors in V and SpanS $=W$. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:
(1) Form equation $c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{n} \odot v_{n}=0$
(2) Construct the augmented matrix associated with the corresponding homogenous linear system and transform it to the reduced row echelon form.

Basis and Dimension

Theorem

Let $V=\mathbb{R}^{m}, S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\},(n \geq m)$ be a set of nonzero vectors in V and SpanS $=W$. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:
(1) Form equation $c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus \ldots \oplus c_{n} \odot v_{n}=0$
(2) Construct the augmented matrix associated with the corresponding homogenous linear system and transform it to the reduced row echelon form.
(3) The vectors corresponding to the columns containing the leading 1's form a basis for W.

Basis and Dimension

Example

$$
V:=\mathbb{R}^{3},
$$

$$
\left\{v_{1}^{S}:=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], v_{3}=\left[\begin{array}{c}
3 \\
-3 \\
1
\end{array}\right], v_{4}=\left[\begin{array}{c}
-1 \\
7 \\
1
\end{array}\right], v_{5}=\left[\begin{array}{c}
5 \\
-2 \\
0
\end{array}\right]\right.
$$

It is easy to show that S pan $S=V$. Find a subset of S that is a basis for \mathbb{R}^{3}.

Solution:

$$
\begin{aligned}
& c_{1} \odot v_{1} \oplus c_{2} \odot v_{2} \oplus c_{3} \odot v_{3} \oplus c_{4} \odot v_{4} \oplus c_{5} \odot v_{5}=0 \\
\Rightarrow & {\left[\begin{array}{ccccc}
1 & 2 & 3 & -1 & 5 \\
2 & 1 & -3 & 7 & -2 \\
1 & -1 & 1 & 1 & 0
\end{array}\right] \approx \cdots \approx\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 1
\end{array}\right] . }
\end{aligned}
$$

Then, the leading 1 's appears in columns $1,2,3$, so $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for \mathbb{R}^{3}.

Basis and Dimension

Theorem

(1) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $W=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ is a linearly independent set of vectors in $V \Rightarrow r \leq n$.

Basis and Dimension

Theorem

(1) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $W=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ is a linearly independent set of vectors in $V \Rightarrow r \leq n$.
(2) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ spans $V \Rightarrow m \geq n$.

Basis and Dimension

Theorem

(1) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $W=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ is a linearly independent set of vectors in $V \Rightarrow r \leq n$.
(2) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ spans $V \Rightarrow m \geq n$.
(3) Let V be an n-dimensional vector space. If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent set of $V \Rightarrow S$ is a basis for V.

Basis and Dimension

Theorem

(1) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $W=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ is a linearly independent set of vectors in $V \Rightarrow r \leq n$.
(2) If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ spans $V \Rightarrow m \geq n$.
(3) Let V be an n-dimensional vector space. If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent set of $V \Rightarrow S$ is a basis for V.
(1) Let V be an n-dimensional vector space. If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans $V \Rightarrow S$ is a basis for V.

Basis and Dimension

Example

$V:=\mathbb{R}^{3}$,
$S:=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 7 \\ 1\end{array}\right],\left[\begin{array}{c}5 \\ -2 \\ 0\end{array}\right]\right\}$.
SpanS $=V$. From the above theorem S is not a basis for \mathbb{R}^{3}.

