Lecture 9: Linear Transformations and Matrices

Elif Tan

Ankara University

Linear Transformations and Matrices

Definition (Matrix representation of a linear transformation)

Let $L: V \rightarrow W$ be a linear transformation and consider the ordered basis $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $T=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ for the vector spaces V and W, respectively. The matrix representation of the linear transformation L with respect to the basis S and T is defined by

$$
A=\left[\left[L\left(v_{1}\right)\right]_{T}\left[L\left(v_{2}\right)\right]_{T} \ldots\left[L\left(v_{n}\right)\right]_{T}\right]_{m \times n} .
$$

Also for $v \in V$, we have

$$
[L(v)]_{T}=A[v]_{S} .
$$

Linear Transformations and Matrices

Example

Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, L\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}+2 x_{2}+3 x_{3} \\ 2 x_{1}+x_{2}-3 x_{3}\end{array}\right]$ be a linear
transformation and consider the standard basis

$$
S=\left\{v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

and

$$
T=\left\{w_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], w_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

for the vector spaces \mathbb{R}^{3} and \mathbb{R}^{2}, respectively.
Find the matrix representation of the linear transformation L with respect to the basis S and T.

Linear Transformations and Matrices

Solution:

$$
\begin{aligned}
L\left(v_{1}\right) & =a_{1} \odot w_{1} \oplus a_{2} \odot w_{2} \Rightarrow\left[L\left(v_{1}\right)\right]_{T}=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
L\left(v_{2}\right) & =b_{1} \odot w_{1} \oplus b_{2} \odot w_{2} \Rightarrow\left[L\left(v_{2}\right)\right]_{T}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
L\left(v_{3}\right) & =c_{1} \odot w_{1} \oplus c_{2} \odot w_{2} \Rightarrow\left[L\left(v_{3}\right)\right]_{T}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3
\end{array}\right] \\
A & =\left[\left[L\left(v_{1}\right)\right]_{T}\left[L\left(v_{2}\right)\right]_{T}\left[L\left(v_{3}\right)\right]_{T}\right]_{2 \times 3}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3
\end{array}\right] .
\end{aligned}
$$

Linear Transformations and Matrices

Theorem

Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and consider the standard basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ for \mathbb{R}^{n}. Let $A=\left[L\left(e_{1}\right) L\left(e_{2}\right) \ldots L\left(e_{n}\right)\right]_{m \times n}$. The matrix A is the only matrix satisfiying the property;

$$
L(x)=A x, \text { for } x \in \mathbb{R}^{n}
$$

It is called the standard matrix representation of the linear transformation L.

Linear Transformations and Matrices

Note that there is a one-to-one correspondence between the linear transformation L and the matrix A, that is;

- if A is $m \times n$ matrix, then there is a corresponding linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which is defined by $L(x)=A x$, for $x \in \mathbb{R}^{n}$.

Linear Transformations and Matrices

Note that there is a one-to-one correspondence between the linear transformation L and the matrix A, that is;

- if A is $m \times n$ matrix, then there is a corresponding linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ which is defined by $L(x)=A x$, for $x \in \mathbb{R}^{n}$.
- Conversely, if $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then there is a corresponding $m \times n$ matrix A which is defined by $A=\left[L\left(e_{1}\right) L\left(e_{2}\right) \ldots L\left(e_{n}\right)\right]_{m \times n}$.

Linear Transformations and Matrices

Example

Find the linear transformation which corresponds to the matrix
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3\end{array}\right]_{2 \times 3}$.
Solution: The corresponding linear transformation is defined by $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

$$
\begin{aligned}
L\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right) & =A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3} \\
2 x_{1}+x_{2}-3 x_{3}
\end{array}\right] .
\end{aligned}
$$

Linear Transformations and Matrices

- To find the rank of the linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, it is enough to check the rank of the matrix A. The rank of an $m \times n$ matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

$$
\begin{aligned}
\operatorname{dim} \mathbb{R}^{n} & =\operatorname{dim} \operatorname{Ker} L+\operatorname{dim} L\left(\mathbb{R}^{n}\right) \\
n & =\text { nullity } A+\operatorname{rank} A
\end{aligned}
$$

Linear Transformations and Matrices

- To find the rank of the linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, it is enough to check the rank of the matrix A. The rank of an $m \times n$ matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

$$
\begin{aligned}
\operatorname{dim} \mathbb{R}^{n} & =\operatorname{dim} \operatorname{Ker} L+\operatorname{dim} L\left(\mathbb{R}^{n}\right) \\
n & =\text { nullity } A+\operatorname{rank} A
\end{aligned}
$$

- If A is an $n \times n$ matrix, then we have

$$
\text { rank } A=n \Leftrightarrow \text { nullity } A=0 \Leftrightarrow \operatorname{det} A \neq 0 \Leftrightarrow A^{-1} \text { exists. }
$$

Linear Transformations and Matrices

Example

Find the rank and nullity of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 1 & -3\end{array}\right]$.
Solution: If we transform the matrix A to the reduced row echelon form, we have

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & -3
\end{array}\right] \approx \cdots \approx\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right]
$$

rankA $=$ number of nonzero rows of the matrix A in the reduced ref.

$$
=2
$$

nullity $A=n-\operatorname{rank} A=3-2=1$.

Linear Transformations and Matrices

Theorem

Let $L: V \rightarrow W$ be a linear transformation and consider the ordered basis $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $S^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ for the vector space V, and $T=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ and $T^{\prime}=\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime}\right\}$ for the vector space W. Let, the transition matrix from basis S^{\prime} to S is P, and the transition matrix from basis T^{\prime} to T is Q. If A is the matrix representation for the linear transformation L with respect to the basis S and T, then $Q^{-1} A P$ is the matrix representation for the linear transformation L with respect to the basis S^{\prime} and T^{\prime}.

Linear Transformations and Matrices

Definition

Let A and B are $n \times n$ matrices, if there exist nonsingular matrix P such that $B=P^{-1} A P$, then it is called B is similar to A.

Theorem

If A and B are similar $n \times n$ matrices, then rank $A=\operatorname{rank} B$.

