Lecture 9: Linear Transformations and Matrices

Elif Tan

Ankara University

3. 3

Definition (Matrix representation of a linear transformation)

Let $L: V \to W$ be a linear transformation and consider the ordered basis $S = \{v_1, v_2, ..., v_n\}$ and $T = \{w_1, w_2, ..., w_m\}$ for the vector spaces V and W, respectively. The matrix representation of the linear transformation L with respect to the basis S and T is defined by

$$A = [[L(v_1)]_T [L(v_2)]_T \dots [L(v_n)]_T]_{m \times n}.$$

Also for $v \in V$, we have

$$[L(\mathbf{v})]_{T} = A[\mathbf{v}]_{S}.$$

Linear Transformations and Matrices

Example

Let
$$L: \mathbb{R}^3 \to \mathbb{R}^2$$
, $L\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 + 3x_3\\2x_1 + x_2 - 3x_3\end{bmatrix}$ be a linear

transformation and consider the standard basis

$$S = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

and

$$\mathcal{T} = \left\{ w_1 = \left[egin{array}{c} 1 \\ 0 \end{array}
ight], w_2 = \left[egin{array}{c} 0 \\ 1 \end{array}
ight]
ight\}$$

for the vector spaces \mathbb{R}^3 and $\mathbb{R}^2,$ respectively.

Find the matrix representation of the linear transformation L with respect to the basis S and T.

Solution:

$$L(v_{1}) = a_{1} \odot w_{1} \oplus a_{2} \odot w_{2} \Rightarrow [L(v_{1})]_{T} = \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$L(v_{2}) = b_{1} \odot w_{1} \oplus b_{2} \odot w_{2} \Rightarrow [L(v_{2})]_{T} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$L(v_{3}) = c_{1} \odot w_{1} \oplus c_{2} \odot w_{2} \Rightarrow [L(v_{3})]_{T} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$
$$A = [[L(v_{1})]_{T} [L(v_{2})]_{T} [L(v_{3})]_{T}]_{2 \times 3} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -3 \end{bmatrix}.$$

2

イロト イポト イモト イモト

Theorem

Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and consider the standard basis $\{e_1, e_2, ..., e_n\}$ for \mathbb{R}^n . Let $A = [L(e_1) L(e_2) ... L(e_n)]_{m \times n}$. The matrix A is the only matrix satisfying the property;

$$L(x) = Ax$$
, for $x \in \mathbb{R}^n$.

It is called the standard matrix representation of the linear transformation L.

Note that there is a one-to-one correspondence between the linear transformation L and the matrix A, that is;

• if A is $m \times n$ matrix, then there is a corresponding linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ which is defined by L(x) = Ax, for $x \in \mathbb{R}^n$.

Note that there is a one-to-one correspondence between the linear transformation L and the matrix A, that is;

- if A is $m \times n$ matrix, then there is a corresponding linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ which is defined by L(x) = Ax, for $x \in \mathbb{R}^n$.
- Conversely, if $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there is a corresponding $m \times n$ matrix A which is defined by $A = [L(e_1) L(e_2) \dots L(e_n)]_{m \times n}.$

• • = • • = •

Linear Transformations and Matrices

Example

Find the linear transformation which corresponds to the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & -3 \end{array} \right]_{2 \times 3}$$

Solution: The corresponding linear transformation is defined by $L: \mathbb{R}^3 \to \mathbb{R}^2$,

$$L\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right]\right) = A\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right]$$
$$= \left[\begin{array}{c} 1 & 2 & 3\\ 2 & 1 & -3\end{array}\right]\left[\begin{array}{c} x_1\\ x_2\\ x_3\end{array}\right]$$
$$= \left[\begin{array}{c} x_1 + 2x_2 + 3x_3\\ 2x_1 + x_2 - 3x_3\end{array}\right].$$

 To find the rank of the linear transformation L: ℝⁿ → ℝ^m, it is enough to check the rank of the matrix A. The rank of an m × n matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

 $\dim \mathbb{R}^n = \dim KerL + \dim L(\mathbb{R}^n)$ n = nullity A + rank A

 To find the rank of the linear transformation L: ℝⁿ → ℝ^m, it is enough to check the rank of the matrix A. The rank of an m × n matrix A is the number of nonzero rows in the reduced row echelon form of the matrix A.

$$\dim \mathbb{R}^n = \dim KerL + \dim L(\mathbb{R}^n)$$
$$n = nullity A + rank A$$

• If A is an $n \times n$ matrix, then we have

rank $A = n \Leftrightarrow$ nullity $A = 0 \Leftrightarrow \det A \neq 0 \Leftrightarrow A^{-1}$ exists.

Example

Find the rank and nullity of the matrix
$$A = \left[egin{array}{ccc} 1 & 2 & 3 \ 2 & 1 & -3 \end{array}
ight].$$

Solution: If we transform the matrix A to the reduced row echelon form, we have

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 1 & -3 \end{array} \right] \approx \cdots \approx \left[\begin{array}{rrr} 1 & 0 & -3 \\ 0 & 1 & 3 \end{array} \right]$$

rankA = number of nonzero rows of the matrix A in the reduced ref. = 2

nullityA = n - rankA = 3 - 2 = 1.

3 × 4 3 × -

Theorem

Let $L: V \to W$ be a linear transformation and consider the ordered basis $S = \{v_1, v_2, ..., v_n\}$ and $S' = \{v'_1, v'_2, ..., v'_n\}$ for the vector space V, and $T = \{w_1, w_2, ..., w_m\}$ and $T' = \{w'_1, w'_2, ..., w'_m\}$ for the vector space W. Let, the transition matrix from basis S' to S is P, and the transition matrix from basis T' to T is Q. If A is the matrix representation for the linear transformation L with respect to the basis S and T, then $Q^{-1}AP$ is the matrix representation for the linear transformation L with respect to the basis S' and T'.

Definition

Let A and B are $n \times n$ matrices, if there exist nonsingular matrix P such that $B = P^{-1}AP$, then it is called B is similar to A.

Theorem

If A and B are similar $n \times n$ matrices, then rankA = rankB.