Lecture 11: Diagonalization

Elif Tan

Ankara University

Diagonalization

Definition

The $n \times n$ matrix A is diagonalizable if there exits nonsingular matrix P
such that $P^{-1} A P=D$, where $D:=\left[\begin{array}{cccc}d_{1} & 0 & \cdots & 0 \\ 0 & d_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_{n}\end{array}\right]$ is diagonal

matrix.

Diagonalization

Definition

Let $L: V \rightarrow V$ be a linear transformation and $\operatorname{dim} V=n$. We say that L is diagonalizable, if its matrix representation A is diagonalizable.

> Theorem
> Let $L: V \rightarrow V$ be a linear transformation and $\operatorname{dim} V=n$. Then L is diagonalizable $\Leftrightarrow V$ has a basis S which consists of the eigenvectors of L. Moreover, if the matrix representation of L with respect to the basis S is the diagonal matrix D, then the entries on the main diagonal of D are the eigenvalues of L.

Diagonalization

Following theorem gives when an $n \times n$ matrix A can be diagonalized.

Theorem

(1) An $n \times n$ matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. Moreover, the entries on the main diagonal of D are the eigenvalues of A.

Diagonalization

Following theorem gives when an $n \times n$ matrix A can be diagonalized.

Theorem

(1) An $n \times n$ matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. Moreover, the entries on the main diagonal of D are the eigenvalues of A.
(2) If the roots of the characteristic polynomial of an $n \times n$ matrix A are distinct, then A is diagonalizable.

Diagonalization

Following theorem gives when an $n \times n$ matrix A can be diagonalized.

Theorem

(1) An $n \times n$ matrix A is similar to a diagonal matrix D if and only if A has n linearly independent eigenvectors. Moreover, the entries on the main diagonal of D are the eigenvalues of A.
(2) If the roots of the characteristic polynomial of an $n \times n$ matrix A are distinct, then A is diagonalizable.
(3) If the roots of the characteristic polynomial of an $n \times n$ matrix A are not all distinct, then A may or may not be diagonalizable.

The procedure for diagonalization

Let A be $n \times n$ matrix.
(1) Find the eigenvalues of A. If the eigenvalues of A are all distinct, then A is diagonalizable. If eigenvalues of A are not all distinct, A may or may not be diagonalizable.

The procedure for diagonalization

Let A be $n \times n$ matrix.
(1) Find the eigenvalues of A. If the eigenvalues of A are all distinct, then A is diagonalizable. If eigenvalues of A are not all distinct, A may or may not be diagonalizable.
(2) Find the eigenvectors associated with the eigenvalues.

The procedure for diagonalization

Let A be $n \times n$ matrix.
(1) Find the eigenvalues of A. If the eigenvalues of A are all distinct, then A is diagonalizable. If eigenvalues of A are not all distinct, A may or may not be diagonalizable.
(2) Find the eigenvectors associated with the eigenvalues.
(3) Compare the dimension of A and the number of linear independent eigenvectors. If they are equal, then A is diagonalizable. Otherwise, A is not diagonalizable.

The procedure for diagonalization

Let A be $n \times n$ matrix.
(1) Find the eigenvalues of A. If the eigenvalues of A are all distinct, then A is diagonalizable. If eigenvalues of A are not all distinct, A may or may not be diagonalizable.
(2) Find the eigenvectors associated with the eigenvalues.
(3) Compare the dimension of A and the number of linear independent eigenvectors. If they are equal, then A is diagonalizable. Otherwise, A is not diagonalizable.
(9) Construct the matrix P whose columns are eigenvectors of A.

The procedure for diagonalization

Let A be $n \times n$ matrix.
(1) Find the eigenvalues of A. If the eigenvalues of A are all distinct, then A is diagonalizable. If eigenvalues of A are not all distinct, A may or may not be diagonalizable.
(2) Find the eigenvectors associated with the eigenvalues.
(3) Compare the dimension of A and the number of linear independent eigenvectors. If they are equal, then A is diagonalizable. Otherwise, A is not diagonalizable.
(9) Construct the matrix P whose columns are eigenvectors of A.
(5) Construct the diagonal matrix D such that $P^{-1} A P=D$.

Diagonalization

Example

Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 4 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$, if possible.

Solution:

1. The eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3$.
2. The eigenvectors associated with the eigenvalues are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
10 \\
5 \\
1
\end{array}\right]
$$

3. Since the number of linear independent eigenvectors is equal to the dimension of A, A is diagonalizable.

Diagonalization

4. The matrix P consists of the eigenvectors of A, i.e.

$$
P=\left[\begin{array}{ccc}
1 & 4 & 10 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]
$$

5. The diagonal matrix D is

$$
\begin{aligned}
P^{-1} A P & =D \\
& =\left[\begin{array}{ccc}
1 & -4 & 10 \\
0 & 1 & -5 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 10 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
\end{aligned}
$$

Diagonalization

Applications of diagonalization:

(1) $A^{-1}=P D^{-1} P^{-1} ; D^{-1}=\left[\begin{array}{cccc}1 / d_{1} & 0 & \cdots & 0 \\ 0 & 1 / d_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 / d_{n}\end{array}\right]$

Diagonalization

Applications of diagonalization:

(1) $A^{-1}=P D^{-1} P^{-1} ; D^{-1}=\left[\begin{array}{cccc}1 / d_{1} & 0 & \cdots & 0 \\ 0 & 1 / d_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 / d_{n}\end{array}\right]$
(2) $A^{k}=P D^{k} P^{-1} ; D^{k}=\left[\begin{array}{cccc}d_{1}^{k} & 0 & \cdots & 0 \\ 0 & d_{2}^{k} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_{n}^{k}\end{array}\right]$.

Diagonalization

Example

Compute A^{5}, for the matrix $A=\left[\begin{array}{lll}1 & 4 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & 3\end{array}\right]$.
Solution: Since A is diagonalizable, we have

$$
\begin{aligned}
A^{5} & =P D^{5} P^{-1} \\
& =\left[\begin{array}{lll}
1 & 4 & 10 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1^{5} & 0 & 0 \\
0 & 2^{5} & 0 \\
0 & 0 & 3^{5}
\end{array}\right]\left[\begin{array}{ccc}
1 & -4 & 10 \\
0 & 1 & -5 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 124 & 1800 \\
0 & 32 & 1055 \\
0 & 0 & 243
\end{array}\right] .
\end{aligned}
$$

Diagonalization

Theorem

If A is real and symmetric matrix, then A is always diagonalizable. (\exists orthogonal matrix P such that $P^{T} A P=P^{-1} A P=D$.)

Jordan Canonical Form

If an $n \times n$ matrix A cannot be diagonalized, then we can often find a matrix J similar to A. The square matrix J is said to be in Jordan canonical form, and the square matrix J_{i} is called a Jordan blok.
$Q^{-1} A Q=J=\left[\begin{array}{cccc}J_{1} & 0 & \cdots & 0 \\ 0 & J_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{k}\end{array}\right]$, where $J_{i}:=\left[\begin{array}{cccc}\lambda & 1 & \cdots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda\end{array}\right]$

