SAMPLE OF EXAM

1. Determine whether $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -3 & 1 \end{bmatrix}$ is invertible or not. If it is, find it.

2. Consider the linear system

$$x_1 + \mathbf{m}x_2 - 3x_3 = 5$$

$$2x_1 + 3\mathbf{m}x_2 - 6x_3 = 8$$

$$-x_1 + \mathbf{m}x_2 + \mathbf{n}x_3 = -9$$

By using the Gauss elimination method, find all values of \mathbf{m} and \mathbf{n} for which

- a) the system is inconsistent,
- b) the system has exactly one solution,
- c) the system has infinitely many solutions.
- **3.** Some of the entries of the 3×3 matrix A are known as $A = \begin{bmatrix} . & 1 & 2 \\ 2 & . & . \\ . & -1 & 1 \end{bmatrix}$. Suppose that det(A) = -6 and that $A^{-1} = \begin{bmatrix} . & x & . \\ . & . & . \\ . & . & . \end{bmatrix}$. Find x.

4. Answer each of the following questions True (T) or False (F).

a) If a system of linear equations has two different solutions, then it must have infinitely many solutions

b) Every system of linear equations has at least one solution

c) If A and B are $n \times n$ invertible matrices, then the equality $(A + B)(A - B) = A^2 - B^2$ is always true

d) If A is an $n \times n$ matrix such that $A^3 = I_n$, then A is invertible

e) If A is 3×3 matrix such that $A^2 = A$, then det $(A^5) = \det A$

Good luck!

SAMPLE OF EXAM

1. Let W be the set of all 2×2 matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that det A = 0. Is W a subspace of M_{22} ? Justify your answer.

2. Consider the vector space \mathbb{R}^3 with the standard operations.

a) For what values of x are the vectors $v_1 = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix}$ linearly independent?

b) For what values of y the vector $u = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$ can not be spanned by the vectors $u_1 = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$

and $u_2 = \begin{bmatrix} 1\\3\\y \end{bmatrix}$? **3.** Let $S = \{v_1, v_2, v_3\}$ and $T = \left\{ \begin{bmatrix} -1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1\\-1 \end{bmatrix} \right\}$ be ordered basis for \mathbb{R}^3 . The transition matrix from the basis T to the basis S is $P_{S \leftarrow T} = \begin{bmatrix} -2 & 1 & -1\\7 & 0 & 2\\3 & 0 & 1 \end{bmatrix}$. Determine the basis

S. (Note that
$$P_{S\leftarrow T}^{-1} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & -1 & 3 \\ 0 & 3 & 7 \end{bmatrix}$$
)

4. Find a basis for the subspace $U = \left\{ \begin{bmatrix} a+c & a-b \\ b+c & b-a \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$ of M_{22} . What is the dimension of U?

Good luck!