SAMPLE OF EXAM

1. Determine whether $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & -3 & 1\end{array}\right]$ is invertible or not. If it is, find it.
2. Consider the linear system

$$
\begin{aligned}
x_{1}+\mathbf{m} x_{2}-3 x_{3} & =5 \\
2 x_{1}+3 \mathbf{m} x_{2}-6 x_{3} & =8 \\
-x_{1}+\mathbf{m} x_{2}+\mathbf{n} x_{3} & =-9
\end{aligned}
$$

By using the Gauss elimination method, find all values of \mathbf{m} and \mathbf{n} for which
a) the system is inconsistent,
b) the system has exactly one solution,
c) the system has infinitely many solutions.
3. Some of the entries of the 3×3 matrix A are known as $A=\left[\begin{array}{ccc}\cdot & 1 & 2 \\ 2 & \cdot & \cdot \\ \cdot & -1 & 1\end{array}\right]$.

Suppose that $\operatorname{det}(A)=-6$ and that $A^{-1}=\left[\begin{array}{lll}. & x & . \\ . & . & . \\ . & . & .\end{array}\right]$. Find x.
4. Answer each of the following questions True (T) or False (F).
a) If a system of linear equations has two different solutions, then it must have infinitely many solutions
b) Every system of linear equations has at least one solution
c) If A and B are $n \times n$ invertible matrices, then the equality $(A+B)(A-B)=A^{2}-B^{2}$ is always true
d) If A is an $n \times n$ matrix such that $A^{3}=I_{n}$, then A is invertible \ldots
e) If A is 3×3 matrix such that $A^{2}=A$, then $\operatorname{det}\left(A^{5}\right)=\operatorname{det} A \ldots$.

Good luck!

SAMPLE OF EXAM

1. Let W be the set of all 2×2 matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $\operatorname{det} A=0$. Is W a subspace of M_{22} ? Justify your answer.
2. Consider the vector space \mathbb{R}^{3} with the standard operations.
a) For what values of x are the vectors $v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$, and $v_{3}=\left[\begin{array}{l}1 \\ 1 \\ x\end{array}\right]$ linearly independent?
b) For what values of y the vector $u=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$ can not be spanned by the vectors $u_{1}=\left[\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right]$ and $u_{2}=\left[\begin{array}{l}1 \\ 3 \\ y\end{array}\right]$?
3. Let $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $T=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]\right\}$ be ordered basis for \mathbb{R}^{3}. The transition matrix from the basis T to the basis S is $P_{S \leftarrow T}=\left[\begin{array}{ccc}-2 & 1 & -1 \\ 7 & 0 & 2 \\ 3 & 0 & 1\end{array}\right]$. Determine the basis $S .\left(\right.$ Note that $\left.P_{S \leftarrow T}^{-1}=\left[\begin{array}{ccc}0 & 1 & -2 \\ 1 & -1 & 3 \\ 0 & 3 & 7\end{array}\right]\right)$
4. Find a basis for the subspace $U=\left\{\left[\begin{array}{ll}a+c & a-b \\ b+c & b-a\end{array}\right]: a, b, c \in \mathbb{R}\right\}$ of M_{22}. What is the dimension of U ?

Good luck!

