

Respiratory System and Disorders Lesson 2

Res.Ass. Firat AKAT, PhD akatfirat@gmail.com

Diffusion

 Diffusion through tissues is described by Fick's law:

• As a result, carbon dioxide diffuses more rapidly than does oxygen (20 times more).

Alveolar Gas Pressures

- Athmosperic gas pressures:
 - $Po_2 = 160 \text{ mmHg}$
 - $Pco_2 = 0,3 mmHg$
- Typical alveolar gas pressures:
 - $Po_2 = 105 mmHg$
 - $-Pco_2 = 40 \text{ mmHg}$
- The factors that determine the precise value of alveolar Po₂:
 - 1. The Po₂ of atmospheric air
 - 2. The rate of alveolar ventilation.
 - 3. The rate of total-body oxygen consumption.

- Hypoventilation exists when there is an increase in the ratio of carbon dioxide production to alveolar ventilation.
- Hyperventilation exists when there is a decrease in the ratio of carbon dioxide production to alveolar ventilation.

Diffusion and Perfusion Limitations

Diffusion and Perfusion Limitations

- Carbon monoxide (CO): Binds tightly to Hb. Large amount of CO can be taken up by the cell with almost no increase in partial pressure.
- It is clear, therefore, that the amount of carbon monoxide that gets into the blood is limited by the diffusion properties of the blood-gas barrier and not by the amount of blood available.
- The transfer of carbon monoxide is therefore said to be *diffusion limited*.

Diffusion and Perfusion Limitations

- Nitrous oxide (N₂O): No combination with hemoglobin takes place. The partial pressure rises rapidly.
- The amount of this gas taken up by the blood depends entirely on the amount of available blood flow and not at all on the diffusion properties of the blood-gas barrier.

 The transfer of nitrous oxide is therefore *perfusion limited*.

Diffusion of Oxygen

- Oxygen (O₂): O₂ combines with hemoglobin (unlike nitrous oxide) but with nothing like the avidity of carbon monoxide.
- Under resting conditions, the capillary Po₂ virtually reaches that of alveolar gas in 0,25 sec. Under these conditions, O₂ transfer is perfusion limited like nitrous oxide.
- However, in some abnormal circumstances when the diffusion properties of the lung are impaired, it may become diffusion limitated as well.

Diffusion of Oxygen

- The diffusion reserves of the normal lung are enormous.
- In severe exercise, the time available for oxygenation is less (1/3), but in normal subjects breathing air, there is generally still no measurable fall in endcapillary Po₂.
- Abnormality: Thickenin of alveolar wall by disease so that rate of oxygen diffusion is slowed

Diffusion of Oxygen

 Another way of stressing the diffusion properties of the lung is to lower the alveolar Po₂.

 Subject is either going to high altitude or inhaling a low O₂ mixture.

Impairment of Diffusion

- The total surface area of all of the alveoli in contact with pulmonary capillaries may be decreased:
 - In *pulmonary edema*, some of the alveoli may become filled with fluid.
 - Alveolar walls become severely thickened with connective tissue (fibrotic), as, for example *diffuse interstitial fibrosis*.
- Typical symptoms of these types of diffusion diseases: shortness of breath and poor oxygenation of blood.
- Pure diffusion problems of these types are restricted to oxygen and usually do not affect the elimination of carbon dioxide, which diffuses more rapidly than oxygen.

Matching of Ventilation and Perfusion

 Ventilation—perfusion inequality is the mismatch of alveolar air flow and capillary blood flow.

 Because of gravitational effects on ventilation and perfusion, there is enough ventilation perfusion inequality in <u>healthy people</u> to decrease the arterial Po₂ about 5 mmHg. (105 → 100)

The Ventilation-Perfusion Ratio

 The Po₂ in any lung unit is determined by the ratio of ventilation to blood flow. This is true not only for O₂ but also for CO₂.

Regional Gas Exchange in the Lung

 Ventilation increases slowly from top to bottom of the lung and blood flow increases more rapidly.

 As a consequence, the ventilation-perfusion ratio is abnormally high at the top of the lung (where the blood flow is minimal) and much lower at the bottom.

Matching of Ventilation and Perfusion

- Disease states can cause marked ventilation—perfusion inequalities:
 - 1. There may be ventilated alveoli with no blood supply at all (dead space or wasted ventilation) due to a blood clot, for example.
 - 2. There may be blood flowing through areas of lung that have no ventilation (this is termed a *shunt*) due to collapsed alveoli, for example
 - 3. Thebesian veins in heart.
- There are several local homeostatic responses within the lungs that minimize the mismatching of ventilation and blood flow and thereby maximize the efficiency of gas exchange.

Local Control of Ventilation–Perfusion Matching

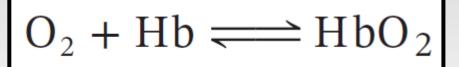
- 1. Low oxygen in alveoli causes local vasoconstriction
- 2. Low perfusion causes local bronchoconstriction

Transport of Oxygen in Blood

- The oxygen is present in two forms in blood:
 - 1. Dissolved in the plasma (2%)
 - 2. Reversibly combined with hemoglobin molecules in the erythrocytes (98%)
- According to Henry's law, the amount dissolved O₂ is proportional to the partial pressure
 - For each mm Hg of Po₂; there is 0,003 ml O₂/100ml blood.
- Dissolved O₂ is insufficent for metabolism. Clearly, an additional method of transporting O₂ is required

Transport of Oxygen in Blood

Hemoglobin


- Each **hemoglobin** molecule is a protein made up of four subunits bound together.
- Heme is an iron-porphyrin compound that is joined to each of four polypeptide chains that together constitute the protein globin.
- The chains are of two types, alpha and beta, and differences in their amino acid sequences give rise to various types of human hemoglobin.

Transport of Oxygen in Blood

Hemoglobin

- Each of the four heme groups in a hemoglobin molecule contains one atom of iron (Fe²⁺), to which molecular oxygen binds.
- Each iron atom can bind one molecule of oxygen, a single hemoglobin molecule can bind four oxygen molecules.

 Hemoglobin can exist in one of two forms deoxyhemoglobin (Hb) and oxyhemoglobin (HbO₂).

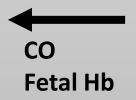
Hemoglobin Saturation

 In a blood sample containing many hemoglobin molecules, the fraction of all the hemoglobin in the form of oxyhemoglobin is expressed as the percent hemoglobin saturation.

- Percent Hb saturation = $\frac{O_2 \text{ bound to Hb}}{\text{Maximal capacity of Hb to bind }O_2} x100$
- The denominator in this equation is also termed the **oxygen-carrying capacity** of the blood.

- By far the most important is the blood Po₂.
- The curve is sigmoid. Because the reactions of the four subunits occur sequentially, with each combination facilitating the next one.
- The globin units of deoxyhemoglobin are tightly held by electrostatic bonds in a conformation with a relatively low affinity for oxygen.
- The binding of oxygen to a heme molecule breaks some of these bonds between the globin subunits, leading to a conformation change that leaves the remaining oxygenbinding sites more exposed.

Tense (T) State Low Affinity State



Relaxed (R) State High Affinity State

- As a summary,
 - Hb has high affinity to O_2 in lung capillaries (High Po_2) (loads the O_2)
 - Hb has low affinity to O_2 in systemic capillaries (Low Po_2) (unloads the O_2)
- This plateau portion at higher Po₂ values has a number of important implications (a safety factor).
 - In many situations, including at high altitude and with pulmonary disease, a moderate reduction occurs in alveolar Po_{2.}
 - Even if the Po₂ decreased from the normal value of 100 to 60 mmHg, the total quantity of oxygen carried by hemoglobin would decrease by only 10%.

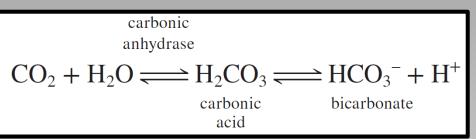
- The plateau portion also explains;
 - A healthy person at sea level, increasing the alveolar Po₂ either by hyperventilating or by breathing 100% oxygen does not increase Hb saturation.
 - Only a small additional amount dissolves.
- BUT! If a person initially has a low arterial Po₂ because of lung disease or high altitude, then increasing the alveolar Po₂ would result in significantly more oxygen transport on hemoglobin.
- The **steep portion** of the curve (from 60 mmHg down to 20 mmHg) is ideal for unloading oxygen in the tissues:
 - A small decrease in Po₂ due to diffusion of oxygen from the blood to the cells, a large quantity of oxygen can be unloaded in the peripheral tissue capillaries.

- The factors that influence hemoglobin saturation other than Po₂:
 - Blood Pco₂,
 - H⁺ concentration p[H⁺],
 - Temperature,
 - **2,3-diphosphoglycerate(DPG)** (also known as bisphosphoglycerate [BPG])
- DPG, which is produced in erythrocytes reversibly binds with hemoglobin, causing it to have a lower affinity for oxygen:
 - Whenever DPG concentrations increase, there is enhanced unloading of oxygen from hemoglobin.
 - Increase in DPG concentration is triggered by inadequate oxygen supply or hypoxia (high altitude).

Temperature ↑ 2,3-diphosphoglycerate(DPG) ↑ p[H⁺] ↑

 The more metabolically active tissues, have greater Pco₂, H⁺ concentration, and temperature.

 At any given Po₂, this causes hemoglobin to release more oxygen during passage through the tissue's capillaries.


• It is another local mechanism that increases oxygen delivery to tissues with increased metabolic activity.

Carbon monoxide (CO) Poisoning

- Carbon monoxide (CO) is a colorless, odorless gas.
 Inhalation of CO is a common cause of sickness and death due to poisoning
- CO has extremely high affinity—210 times that of oxygen—for the oxygen-binding sites in hemoglobin so it occupies these sites.
- CO exerts a second deleterious effect.
 - Upon binding to hemoglobin it increases affinity of O₂
 - Hb cannot unload O₂ for tissues.

Transport of Carbon dioxide (CO₂) in Blood

- 1. In bicarbonate (HCO3-) form (60% to 65%)
 - CO_2 is converted to HCO_3^-

- 2. In carbamino form (25% to 30%)
 - CO₂ react reversibly with the amino groups of hemoglobin to form carbaminohemoglobin.

$$CO_2 + Hb \Longrightarrow HbCO_2$$

- 3. Dissolved in plasma (10%)
 - CO₂ is much more soluble in water than oxygen

Transport of Carbon dioxide (CO₂) in Blood

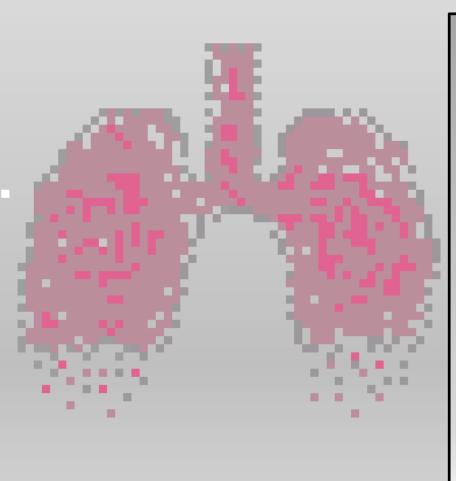
- This reaction is too slow unless catalyzed in both directions by the enzyme carbonic anhydrase.
- This enzyme is present in the erythrocytes but not in the plasma, so this reaction occurs mainly in the erythrocytes.
- Once formed, most of the HCO₃⁻ moves out of the erythrocytes into the plasma via a transporter that exchanges one HCO₃⁻ for one chloride ion (this is called the "chloride shift" which maintains electroneutrality).

carbonic anhydrase $CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow HCO_3^- + H^+$ bicarbonate carbonic acid

TISSUE CAPILLARIES

LUNG CAPILLARIES

Transport of H⁺ Between Tissues and Lungs


- Deoxyhemoglobin has a much greater affinity for H⁺ than does oxyhemoglobin, so it binds (buffers) most of the H⁺.
- When deoxyhemoglobin binds H⁺, it is abbreviated HbH.

$$HbO_2 + H^+ \Longrightarrow HbH + O_2$$

 In this manner, only a small amount of the H+ generated in the blood remains free. This explains why venous blood (pH = 7.36) is only slightly more acidic than arterial blood (pH = 7.40).

Transport of H⁺ Between Tissues and Lungs

- As the venous blood passes through the lungs, this reaction is reversed.
- When a person is hypoventilating;
 - Not only would arterial Pco₂ increase as a result, but so would arterial [H⁺]. Increased arterial [H⁺] due to CO₂ retention is termed *respiratory acidosis*
- Conversely, hyperventilation;
 - Would decrease arterial Pco₂ and [H⁺], produce *respiratory alkalosis.*

REFERENCES

Hall, John E. *Guyton and Hall textbook of medical physiology e-Book*. Elsevier Health Sciences, 2010.

Koeppen, Bruce M., and Bruce A. Stanton. *Berne & Levy Physiology, Updated Edition E-Book*. Elsevier Health Sciences, 2009.

Rhoades, Rodney, and George A. Tanner, eds. *Medical physiology*. Lippincott Williams & Wilkins, 2003.

Widmaier, Eric P., et al. *Vander's Human physiology: the mechanisms of body function*. Boston: McGraw-Hill Higher Education,, 2008.

Thank you for your patience!