ACID-BASE AND BUFFER CONCEPTS

ACIDS AND BASES

- Many of the low-molecular weight metabolites and macromolecular components present in living cells are acids and bases.
- These molecules have the potential to ionize.
- The charges present on these molecules are important in the rate of enzyme-catalysed reactions, the stability of proteins and in the interactions with each other and with other small ions.

Bronsted concept of conjugate acidconjugate base pairs:

- A substance that donates protons (hydrogen ions) is an "acid" and a substance that accepts protons is a "base".
- When a Bronsted acid loses a proton, a Bronsted base is produced. The original acid and resulting base are named as a conjugate acid-conjugate base pair. The substance that accepts the proton is a different Bronsted base; by accepting the proton, another Bronsted acid is produced. So, in every ionization of an acid or base, two conjugate acid-conjugate base pairs are involved.

$$
\underset{\text { c.acid }_{1}}{\mathrm{HA} . \text { base }_{2}} \mathrm{~B}^{-} \rightleftarrows \mathrm{A}^{-}+\underset{\text { c.base }}{1} \text { c.acid }{ }_{2} \text { (}
$$

- STRONG ACID - STRONG BASE:

Strong acids and strong bases are substances that ionize almost 100\% in aqueous solutions.

- WEAK ACID - WEAK BASE :

Weak acids and weak bases are substances that ionize partially in aqueous solutions.

- pH :
pH is a shorthand way of designating the hydrogen ion activity of a solution. By definition pH is the negative logarithm of the hydrogen ion concentration.

$$
-\log \left[\mathrm{H}^{+}\right] \text {or } \log 1 /\left[\mathrm{H}^{+}\right]
$$

EQUILIBRIUM CONSTANT

- A great many reactions that occur in nature are reversible and do not proceed to completion. Instead, they come to an apparent halt or equilibrium at some point between 0 and 100% completion. At equilibrium, the net velocity is zero because the absolute velocity in the forward direction exactly equals the absolute velocity in the reverse direction. The position of equilibrium is described by an equilibrium constant, K_{eq}.
- For example, if we consider the dissociation of a weak acid as in the reaction below, in which k_{1} and k_{-1} are rate constants.

$$
\mathrm{HA} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} \mathrm{H}^{+}+\mathrm{A}^{-}
$$

forward velocity: reverse velocity:

$$
\mathrm{v}_{\mathrm{f}}=\mathrm{k}_{1}[\mathrm{HA}],
$$

$$
\mathrm{v}_{\mathrm{r}}=\mathrm{k}_{-1}\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]
$$

At equilibrium;

$$
\begin{gathered}
\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{r}} \\
\downarrow \\
\mathrm{k}_{1}[\mathrm{HA}]=\mathrm{k}_{-1}\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] \\
\downarrow \\
\mathrm{k}_{1} / \mathrm{k}_{-1}=\frac{[\mathrm{H}+][\mathrm{A}-]}{[\mathrm{HA}]}
\end{gathered}
$$

The ratio of the two constants $\left(\mathrm{k}_{1} / \mathrm{k}_{-1}\right)$ is itself a constant and is defined as K_{eq}. In this particular case, K_{eq} is an acid dissociation constant and would be indicated as \mathbf{K}_{a}.

$$
\mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H}+][\mathrm{A}-]}{[\mathrm{HA}]}
$$

pH of Solutions of Weak Acids

- The dissociation of a weak acid, HA, yields H^{+}and A^{-}in equal concentrations. If K_{a} and the initial concentration of HA are known, H^{+}can be calculated easily:

$$
\mathrm{Ka}=\frac{[\mathrm{H}+]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \longrightarrow \mathrm{Ka}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}] \Longrightarrow\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{Ka}[\mathrm{HA}]}
$$

- To obtain an expression giving pH , we put the above equation in the logaritmic form

$$
-\log [\mathrm{H}]=\frac{-\log \mathrm{Ka}+-\log [\mathrm{HA}]}{2} \longrightarrow \mathrm{pH}=\frac{\mathrm{pKa}+\mathrm{p}[\mathrm{HA}]}{2}
$$

Henderson-Hasselbalch Equation

- The Henderson - Hasselbalch equation was developed independently by the American biological chemist Henderson and the Swedish physiologist Hasselbalch, for relating the pH to the bicarbonate buffer system of the blood.
- In its general form, the HendersonHasselbalch equation is a useful expression for buffer calculations.

Henderson-Hasselbalch Equation

- An expression relating the K_{a} of a weak acid, HA, and the pH of a solution of the weak acid;

$$
\mathrm{Ka}=\frac{[\mathrm{H}+][\mathrm{A}-]}{[\mathrm{HA}]}
$$

after rearranging terms;

$$
\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \frac{[\mathrm{HA}]}{[\mathrm{A}-]}
$$

- After taking logarithms of both sides and multiplying by -1 ;

$$
-\log \left[\mathrm{H}^{+}\right] \overline{\bar{\downarrow}}-\log \mathrm{Ka}-\log [\mathrm{HA}] /\left[\mathrm{A}^{-}\right]
$$

$$
\mathbf{p H}=\mathbf{p K a}+\log \frac{[\mathbf{A}-](\text { conjugated base })}{}
$$

[HA] (acid)

- When the concentrations of conjugate acid and conjugate base are equal;

$$
\mathrm{pH}=\mathrm{pKa} \quad \text { or } \quad\left[\mathrm{H}^{+}\right]=\mathrm{Ka}
$$

According to the above equations, the pH of a solution containing HA and A^{-}is independent of concentration; the pH established solely by the ratio of conjugate base to conjugate acid.

WHAT IS A BUFFER? HOW DOES A BUFFER WORK?

- A 'buffer' is something that resists change.
- In common chemical usage, a pH buffer is a substance, or mixture of substances, that permits solutions to resist large changes in pH upon the addition of small amounts of H^{+}or OH^{-}ions.
- If we describe it in another way, a buffer helps maintain a near constant pH upon the addition of small amounts of H^{+}or OH^{-}ions to a solution.
- Common buffer mixtures contain two substances, a conjugate acid and a conjugate base.
- An 'acidic' buffer contains a weak acid and a salt of the weak acid (conjugate base).
- A 'basic' buffer contains a weak base and a salt of the weak base (conjugate acid).
- Together the two species (conjugate acid plus conjugate base) resist large changes in pH by partially absorbing additions of H^{+}or OH^{-}ions to the system.
- If H^{+}ions are added to the buffered solution, they react partially with the conjugate base present to form the conjugate acid. Thus, some H^{+}ions are taken out of circulation.
- If OH^{-}ions are added to the buffered solution, they react partially with the conjugate acid present to form water and the conjugate base. Thus, some OH^{-}ions are taken out of circulation.
- Buffered solutions do change in pH upon the addition of H^{+}or OH^{-}ions.
- However, the change is much less than that which would occur if no buffer were present.
- The amount of change depends on the strength of the buffer (buffer capacity) and the [A^{-}] / [HA] ratio.
- Buffer capacity in the acid (or alkaline) direction: The number of moles of H^{+}(or OH^{-}) that must be added to one liter of buffer in order to decrease (or increase) the pH by 1 unit.

