

Murat Osmanoglu

$$B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$

$$\mathsf{B}' = \{(\mathsf{x},), (\mathsf{y},), (\mathsf{z},)\}$$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$

$$B' = \{(x, 0.2), (y,), (z,)\}$$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$

$$B' = \{(x, 0.2), (y, 0.8), (z,)\}$$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} \mu_A(x)\}$

 Let A = {(a, 0.2), (b, 0.7), (c, 0.8), (d, 0.6)} be a fuzzy set, B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

 $\mathsf{B}' = \{(\mathsf{x}, 0.2), (\mathsf{y}, 0.8), (\mathsf{z}, 0.7)\}$

 $B' = \{(y, \mu_{B'}(y)) \mid \mu_{B'}(y) = \max_{x \text{ s.t. } (x,y) \text{ in } R} [\min (\mu_A(x), \mu_R(x,y)]\}$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_A(x)$, $\mu_R(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set, B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t.} (x,y) in R [min ($\mu_A(x)$, $\mu_R(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set, B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t.} (x,y) in R [min ($\mu_A(x)$, $\mu_R(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set, B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

 $\mathsf{B}' = \{(\mathsf{x}, 0.5), (\mathsf{y}, 0.6), (\mathsf{z},)\}$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t.} (x,y) in R [min ($\mu_A(x)$, $\mu_R(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set, B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

 $\mathsf{B}' = \{(\mathsf{x}, 0.5), (\mathsf{y}, 0.6), (\mathsf{z}, 0.7)\}$

d(1,3) = 2 with min { $\mu_A(1), \mu_B(3)$ } = 0.5

d(1,3) = 2 with min { $\mu_A(1)$, $\mu_B(3)$ } = 0.5 d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5

d(1,3) = 2 with min { $\mu_A(1)$, $\mu_B(3)$ } = 0.5 d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5 d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3

d(1,3) = 2 with min {
$$\mu_A(1)$$
, $\mu_B(3)$ } = 0.5
d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5
d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3
d(2,3) = 1 with min { $\mu_A(2)$, $\mu_B(3)$ } = 0.6
d(2,4) = 2 with min { $\mu_A(2)$, $\mu_B(4)$ } = 1.0
d(2,5) = 3 with min { $\mu_A(2)$, $\mu_B(5)$ } = 0.3
d(3,3) = 0 with min { $\mu_A(3)$, $\mu_B(3)$ } = 0.6
d(3,4) = 1 with min { $\mu_A(3)$, $\mu_B(4)$ } = 0.7
d(3,5) = 2 with min { $\mu_A(3)$, $\mu_B(5)$ } = 0.3

d(1,3) = 2 with min {
$$\mu_A(1)$$
, $\mu_B(3)$ } = 0.5
d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5
d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3
d(2,3) = 1 with min { $\mu_A(2)$, $\mu_B(3)$ } = 0.6
d(2,4) = 2 with min { $\mu_A(2)$, $\mu_B(4)$ } = 1.0
d(2,5) = 3 with min { $\mu_A(2)$, $\mu_B(5)$ } = 0.3
d(3,3) = 0 with min { $\mu_A(3)$, $\mu_B(3)$ } = 0.6
d(3,4) = 1 with min { $\mu_A(3)$, $\mu_B(4)$ } = 0.7
d(3,5) = 2 with min { $\mu_A(3)$, $\mu_B(5)$ } = 0.3

 $d(A,B) = \{(0,), (1,), (2,), (3,), (4,)\}$

d(1,3) = 2 with min {
$$\mu_A(1)$$
, $\mu_B(3)$ } = 0.5
d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5
d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3
d(2,3) = 1 with min { $\mu_A(2)$, $\mu_B(3)$ } = 0.6
d(2,4) = 2 with min { $\mu_A(2)$, $\mu_B(4)$ } = 1.0
d(2,5) = 3 with min { $\mu_A(2)$, $\mu_B(5)$ } = 0.3
d(3,3) = 0 with min { $\mu_A(3)$, $\mu_B(3)$ } = 0.6
d(3,4) = 1 with min { $\mu_A(3)$, $\mu_B(4)$ } = 0.7
d(3,5) = 2 with min { $\mu_A(3)$, $\mu_B(5)$ } = 0.3

 $d(A,B) = \{(0, 0.6), (1,), (2,), (3,), (4,)\}$

d(1,3) = 2 with min {
$$\mu_A(1)$$
, $\mu_B(3)$ } = 0.5
d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5
d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3
d(2,3) = 1 with min { $\mu_A(2)$, $\mu_B(3)$ } = 0.6
d(2,4) = 2 with min { $\mu_A(2)$, $\mu_B(4)$ } = 1.0
d(2,5) = 3 with min { $\mu_A(2)$, $\mu_B(5)$ } = 0.3
d(3,3) = 0 with min { $\mu_A(3)$, $\mu_B(3)$ } = 0.6
d(3,4) = 1 with min { $\mu_A(3)$, $\mu_B(4)$ } = 0.7
d(3,5) = 2 with min { $\mu_A(3)$, $\mu_B(5)$ } = 0.3

 $d(A,B) = \{(0, 0.6), (1, 0.7), (2,), (3,), (4,)\}$

d(1,3) = 2 with min {
$$\mu_A(1)$$
, $\mu_B(3)$ } = 0.5
d(1,4) = 3 with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5
d(1,5) = 4 with min { $\mu_A(1)$, $\mu_B(5)$ } = 0.3
d(2,3) = 1 with min { $\mu_A(2)$, $\mu_B(3)$ } = 0.6
d(2,4) = 2 with min { $\mu_A(2)$, $\mu_B(4)$ } = 1.0
d(2,5) = 3 with min { $\mu_A(2)$, $\mu_B(5)$ } = 0.3
d(3,3) = 0 with min { $\mu_A(3)$, $\mu_B(3)$ } = 0.6
d(3,4) = 1 with min { $\mu_A(3)$, $\mu_B(4)$ } = 0.7
d(3,5) = 2 with min { $\mu_A(3)$, $\mu_B(5)$ } = 0.3

 $d(A,B) = \{(0, 0.6), (1, 0.7), (2, 1.0), (3, 0.5), (4, 0.3)\}$