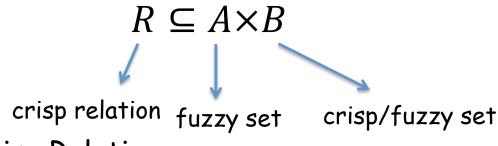
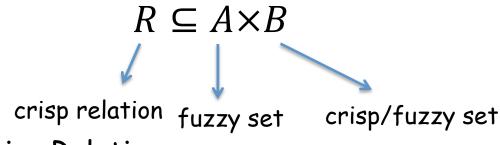

Fuzzy 4


Murat Osmanoglu

Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

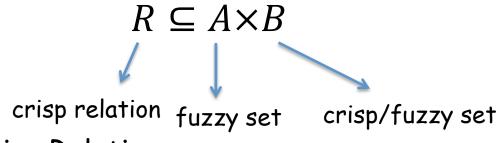
B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }



Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

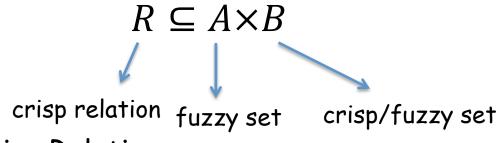


Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

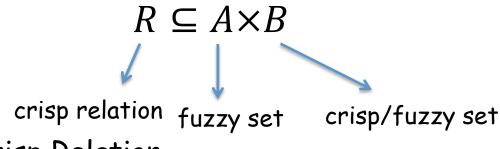


Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

a
$$x$$
b y
C z
d

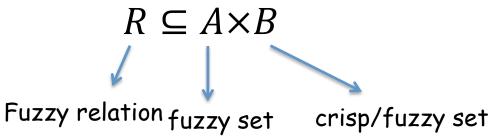


Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

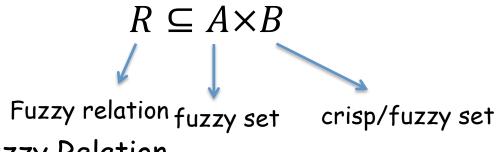
a
$$x$$
b y
C z
d

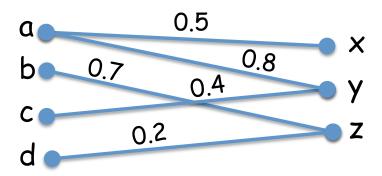


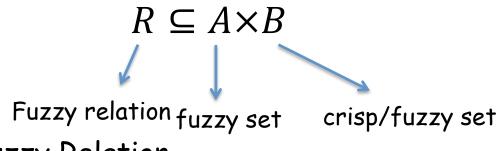
Extension by Crisp Relation

• $B' \subseteq B$ induced by the crisp relation R and the fuzzy set A:

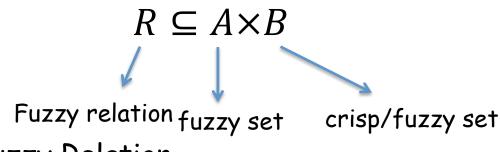
B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} $\mu_{A}(x)$ }

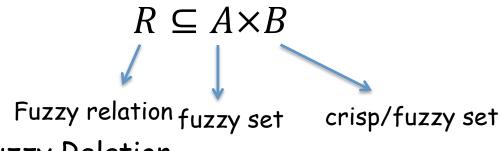

a
$$x$$
b y
C z
d


Extension by Fuzzy Relation


• $B'\subseteq B$ induced by the fuzzy relation R and the fuzzy set A:

B' = {(y,
$$\mu_{B'}(y)$$
) | $\mu_{B'}(y)$ = $\max_{x \text{ s.t. }(x,y) \text{ in } R}$ [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}


- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:


- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2
$$z$$

d 0.5
 x
 y $B' = \{(x,), (y,), (z,)\}$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2
$$z$$

d 0.5
 x
 y $B' = \{(x, 0.5), (y, 0.6), (z,)\}$

- B' \subseteq B induced by the fuzzy relation R and the fuzzy set A: B' = {(y, $\mu_{B'}(y)$) | $\mu_{B'}(y)$ = max_{x s.t. (x,y) in R} [min ($\mu_{A}(x)$, $\mu_{R}(x,y)$]}
- Let A = {(a, 0.6), (b, 0.9), (c, 0.5), (d, 0.3)} be a fuzzy set,
 B = {x, y, z} be a crisp set, and R be a crisp relation given as follows:

a 0.5
b 0.7 0.8
c 0.2
$$z$$

d 0.5
 x
 y $B' = \{(x, 0.5), (y, 0.6), (z, 0.7)\}$

• calculate the fuzzy distance between the fuzzy sets $A = \{(1, 0.5), (2, 1.0), (3, 0.7)\}$ and $B = \{(3, 0.6), (4, 1.0), (5, 0.3)\}$ d(1,3) = 2 with min $\{\mu_A(1), \mu_B(3)\} = 0.5$

$$d(1,3) = 2$$
 with min { $\mu_A(1)$, $\mu_B(3)$ } = 0.5 $d(1,4) = 3$ with min { $\mu_A(1)$, $\mu_B(4)$ } = 0.5

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5 d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5 d(1,5) = 4 with min { \mu_A(1), \mu_B(5)} = 0.3
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5 d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5 d(1,5) = 4 with min { \mu_A(1), \mu_B(5)} = 0.3 d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6 d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0 d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3 d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6 d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7 d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
        d(A,B) = \{(0, ), (1, ), (2, ), (3, ), (4, )\}
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
       d(A,B) = \{(0,0.6), (1,), (2,), (3,), (4,)\}
```

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
       d(A,B) = \{(0,0.6), (1,0.7), (2,), (3,), (4,)\}
```

• calculate the fuzzy distance between the fuzzy sets $A = \{(1, 0.5), (2, 1.0), (3, 0.7)\}$ and $B = \{(3, 0.6), (4, 1.0), (5, 0.3)\}$

```
d(1,3) = 2 with min { \mu_A(1), \mu_B(3)} = 0.5
d(1,4) = 3 with min { \mu_A(1), \mu_B(4)} = 0.5
d(1,5) = 4 with min { \mu_A(1), \mu_R(5)} = 0.3
d(2,3) = 1 with min { \mu_A(2), \mu_B(3)} = 0.6
d(2,4) = 2 with min { \mu_A(2), \mu_B(4)} = 1.0
d(2,5) = 3 with min { \mu_A(2), \mu_B(5)} = 0.3
d(3,3) = 0 with min { \mu_A(3), \mu_B(3)} = 0.6
d(3,4) = 1 with min { \mu_A(3), \mu_B(4)} = 0.7
d(3,5) = 2 with min { \mu_A(3), \mu_B(5)} = 0.3
```

 $d(A,B) = \{(0,0.6), (1,0.7), (2,1.0), (3,0.5), (4,0.3)\}$

Probability Distribution

Possibility Distribution

Probability Distribution

Possibility Distribution

- $0 \le p(x) \le 1$
- $\Sigma_i p(x_i) = 1$

Probability Distribution

- $0 \le p(x) \le 1$
- $\Sigma_i p(x_i) = 1$

Possibility Distribution

- $0 \le \mu(x) \le 1$
- no restriction

Probability Distribution

• $0 \le p(x) \le 1$

• $\Sigma_i p(x_i) = 1$

Possibility Distribution

• $0 \le \mu(x) \le 1$

no restriction

 A, B, C, D organize a chess tournament. The following table shows the probabilities and the possibilities of the players on the tournament

			C		p(x) ≤ µ(x)
P(x)	0.5	0.3	0.2 0.4	0	
μ(x)	1.0	0.7	0.4	0.1	

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

Crisp Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

• the probability of the fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

Crisp Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

the probability of the crisp event A = {a, b, c} will be

$$p(A) = 0.4 + 0.2 + 0.1 = 0.7$$

• the probability of the fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

$$p(A) = 0.4 \times 0.5 + 0.2 \times 1.0 + 0.1 \times 0.3 = 0.43$$

Fuzzy Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

Fuzzy Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

• fuzzy probability of fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

Fuzzy Probability of Fuzzy Event

consider the sample space S = {a, b, c, d} with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

• fuzzy probability of fuzzy event $A=\{(a, 0.5), (b, 1.0), (c, 0.3)\}$

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

Fuzzy Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

fuzzy probability of fuzzy event A={(a, 0.5), (b, 1.0), (c, 0.3)}

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

$$p(A_{0.3}) = 0.7$$
, $p(A_{0.5}) = 0.6$, $p(A_{1.0}) = 0.2$

Fuzzy Probability of Fuzzy Event

• consider the sample space $S = \{a, b, c, d\}$ with the probabilities

$$p(a) = 0.4$$
, $p(b) = 0.2$, $p(c) = 0.1$, $p(d) = 0.3$

fuzzy probability of fuzzy event A={(a, 0.5), (b, 1.0), (c, 0.3)}

$$A_{0.3} = \{a, b, c\}, A_{0.5} = \{a, b\}, A_{1.0} = \{b\}$$

$$p(A_{0.3}) = 0.7, p(A_{0.5}) = 0.6, p(A_{1.0}) = 0.2$$

$$p(A) = \{(0.7, 0.3), (0.6, 0.5), (0.2, 1.0)\}$$