

Murat Osmanoglu

Singleton Input

 the fact is 	•	x is 3 and y is 4
the rule is	•	If x is A and y is B, then z is C
the result is	•	z is C'
where $A = (0, 2, 0)$	6),	B = (3, 6, 7), and C = (1, 3, 5)

<u>Singleton Input</u>

the fact is : x is 3 and y is 4
 the rule is : If x is A and y is B, then z is C
 the result is : z is C'

•
$$\mu_{C_1}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$

<u>Singleton Input</u>

the fact is : x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : z is C'

•
$$\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \ \mu_{C_2'}(z) \} = (a_1 \land a_2) \cdot \mu_C(z)$

Singleton Input

the fact is : x is 3 and y is 4
 the rule is : If x is A and y is B, then z is C
 the result is : z is C'

•
$$\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \ \mu_{C_2'}(z) \} = (a_1 \wedge a_2) \cdot \mu_C(z)$

Singleton Input

the fact is : x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : z is C'

•
$$\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \ \mu_{C_2'}(z) \} = (a_1 \land a_2) \cdot \mu_C(z)$

Singleton Input

the fact is : x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : z is C'

•
$$\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \ \mu_{C_2'}(z) \} = (a_1 \land a_2) \cdot \mu_C(z)$

<u>Singleton Input</u>

the fact is : x is 3 and y is 4
 the rule is : If x is A and y is B, then z is C
 the result is : z is C'

•
$$\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$$
 where $a_1 = \mu_A(x_0)$
 $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (a_1 \land a_2) \cdot \mu_C(z)$

<u>Fuzzy Input</u>

- the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C
 the result is : z is C'
- where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C
the result is : z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

• $\mu_{C_1'}(z) = a_1 \cdot \mu_C(z)$ where $a_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$ $\mu_{C_2'}(z) = a_2 \cdot \mu_C(z)$ where $a_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C
the result is : z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C
the result is : z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C the result is : z is C'
where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C the result is : z is C'
where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C the result is : z is C'
where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-the rule is : If x is A and y is B, then z is C the result is : z is C'
where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)
μ_{C_1}(z) = a₁ . μ_C(z) where a₁ = max_x {min(μ_A(x), μ_{A'}(x))}

 $\mu_{C_2'}(z) = \alpha_2 \cdot \mu_C(z)$ where $\alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$

 $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (a_1 \land a_2) \cdot \mu_{C}(z)$

Singleton Input

•	the fact is	•	x is 3 and y is 4
	the rule is	•	If x is A and y is B, then z is C
	the result is	•	$z = z_0$
W	here A = (0, 2, 6	5) ai	nd B = (3, 6, 7)

Singleton Input

•	the fact is	•	x is 3 and y is 4
	the rule is	•	If x is A and y is B, then z is C
	the result is	•	z = z ₀
W	here A = (0, 2, 6	5) a	nd B = (3, 6, 7)

- the consequence of the fuzzy rule is represented by a fuzzy set with a monotonic membership function
- the output for each rule will be a crisp value induced by the rule's matching degree

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

• $a = a_1 \wedge a_2$ where $a_1 = \mu_A(x_0)$ and $a_2 = \mu_B(y_0)$

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

<u>Singleton Input</u>

• the fact is : x is 3 and y is 4 the rule is : If x is A and y is B, then z is C the result is : $z = z_0$ where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

- the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-
 - the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

• $a_1 = \max_x \{ \min(\mu_A(x), \mu_{A'}(x)) \}$ and $a_2 = \max_y \{ \min(\mu_B(y), \mu_{B'}(y)) \}$

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

<u>Fuzzy Input</u>

the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z = z_0$

where A = (0, 2, 6) and B = (3, 6, 7)

