Fuzzy 9

Murat Osmanoglu

Larsen Fuzzy Inference
Singleton Input

- the fact is: x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$

Larsen Fuzzy Inference
Singleton Input

- the fact is: x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-} 2}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$

Larsen Fuzzy Inference
Singleton Input

- the fact is: x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-} 2}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$
$\mu_{C}(z)=\min \left\{\mu_{c_{-} 1}(z), \mu_{c_{-} 2^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference

Singleton Input

- the fact is : x is 3 and y is 4 the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-2}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{C_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference

Singleton Input

- the fact is: x is 3 and y is 4 the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime} where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-2}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{C_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference

Singleton Input

- the fact is: x is 3 and y is 4 the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-2}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$
$\mu_{C} \cdot(z)=\min \left\{\mu_{c_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{c}(z)$

Larsen Fuzzy Inference

Singleton Input

- the fact is : x is 3 and y is 4 the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\mu_{A}\left(x_{0}\right)$
$\mu_{C_{-2}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\mu_{B}\left(y_{0}\right)$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{C_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference
Fuzzy Input

- the fact is : x is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)--$
the rule is : If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$

Larsen Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$

$$
\mu_{C_{-2}}(z)=a_{2} \cdot \mu_{C}(z) \text { where } a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}
$$

Larsen Fuzzy Inference
Fuzzy Input

- the fact is : x is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)--$
the rule is : If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$
$\mu_{C_{-} 2}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$
$\mu_{C}(z)=\min \left\{\mu_{c_{-} 1}(z), \mu_{c_{-} 2^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is: If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$
$\mu_{C_{2} 2}(z)=a_{2} \cdot \mu_{c}(z)$ where $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{c_{-} 1^{\prime}}(z), \mu_{c_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference
Fuzzy Input

- the fact is : x is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$--
the rule is : If x is A and y is B, then z is C
the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$

$$
\begin{aligned}
& \text { - } \mu_{C_{-1}}(z)=a_{1} \cdot \mu_{C}(z) \text { where } a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\} \\
& \mu_{c_{-} 2}(z)=a_{2} \cdot \mu_{C}(z) \text { where } a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B}(y)\right)\right\} \\
& \mu_{c^{\prime}}(z)=\min \left\{\mu_{C_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{c}(z)
\end{aligned}
$$

Larsen Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1^{\prime}}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$
$\mu_{C_{2} z^{\prime}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{C_{-} 1^{\prime}}(z), \mu_{C_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{c}(z)$

Larsen Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1^{\prime}}(z)=a_{1} \cdot \mu_{C}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$
$\mu_{C_{2} z^{\prime}}(z)=a_{2} \cdot \mu_{C}(z)$ where $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{c_{-} 1^{\prime}}(z), \mu_{c_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Larsen Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)--$ the rule is : If x is A and y is B, then z is C the result is : z is C^{\prime}
where $A=(0,2,6), B=(3,6,7)$, and $C=(1,3,5)$
- $\mu_{C_{-} 1}(z)=a_{1} \cdot \mu_{c}(z)$ where $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$
$\mu_{C_{2} 2}(z)=a_{2} \cdot \mu_{c}(z)$ where $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$
$\mu_{C^{\prime}}(z)=\min \left\{\mu_{c_{-} 1^{\prime}}(z), \mu_{c_{-} z^{\prime}}(z)\right\}=\left(a_{1} \wedge a_{2}\right) \cdot \mu_{C}(z)$

Tsukamoto Fuzzy Inference
Singleton Input

- the fact is: x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is: x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- the consequence of the fuzzy rule is represented by a fuzzy set with a monotonic membership function
- the output for each rule will be a crisp value induced by the rule's matching degree

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is: x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

Tsukamoto Fuzzy Inference
Singleton Input

- the fact is: x is 3 and y is 4
the rule is : If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

$$
z=\mu_{c}^{-1}(\alpha)
$$

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is: x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

$$
z=\mu_{c}^{-1}(a)
$$

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is : x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

$$
z=\mu_{c}^{-1}(a)
$$

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is : x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

$$
z=\mu_{c}^{-1}(a)
$$

Tsukamoto Fuzzy Inference

Singleton Input

- the fact is : x is 3 and y is 4
the rule is: If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a=a_{1} \wedge a_{2}$ where $a_{1}=\mu_{A}\left(x_{0}\right)$ and $a_{2}=\mu_{B}\left(y_{0}\right)$

$$
z=\mu_{c}^{-1}(a)
$$

Tsukamoto Fuzzy Inference
Fuzzy Input

- the fact is : x is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$--
the rule is : If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)--$ the rule is : If x is A and y is B, then z is C
the result is : $z=z_{0}$
where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is: If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

Tsukamoto Fuzzy Inference

Fuzzy Input

- the fact is $: x$ is A^{\prime} and y is $B^{\prime}--A^{\prime}=(2,4,5)$ and $B^{\prime}=(2,3,5)$-the rule is : If x is A and y is B, then z is C the result is : $z=z_{0}$ where $A=(0,2,6)$ and $B=(3,6,7)$
- $a_{1}=\max _{x}\left\{\min \left(\mu_{A}(x), \mu_{A^{\prime}}(x)\right)\right\}$ and $a_{2}=\max _{y}\left\{\min \left(\mu_{B}(y), \mu_{B^{\prime}}(y)\right)\right\}$

$$
z=\mu_{c}^{-1}(a) \text { where } a=a_{1} \wedge a_{2}
$$

