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unused disk space is available on many personal computers 
 

most mining is currently done by specialized ASICs, and they have no use 
other than Bitcoin mining. No such devices required for PoSpace 
 

•  a simple idea can be applied to Bitcoin to avoid ‘mining pools’ : instead 
of applying the hash function to a nonce directly, it will be applied to 
the signature of the nonce (similar idea can be adapted to 
SpaceMint) 
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At the initialization, 
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about F   
 

At any time later, 
verifier initialize a proof 

execution phase  
 

At the end, 
verifier outputs reject 

or accept  
 

•  we demand that verifier is highly efficient in both phases, and prover is highly 
efficient in the execution (generating the proof) and in the access to F 

•  be careful; a cheating prover can delete F after initialization 
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If H is collusion-resistant, then prover must    
keep all the data to be able to provide valid proof 
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slows down consensus 
 

gives chance to cheating miners to get a greater reward 
 

enables double-spending attacks by someone controlling less than 50% of 
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•  Once an honest miner adds a new block to the chain, the transactions up 
to this block cannot be changed, even by someone that holds all secret 
keys of the miners that added all the previous blocks. 	
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-  space commitments : has the form tx = (commit, txID, (pk, λ)) where 

                                     Init(pk,N) è(pk, λ)  
 

-  penalties : has the form tx = (penalty, txID, pk, prf) 
 

                     pk is the public key of the transaction creator 
 

                        prf is the proof indicating that two blocks of same index signed by 
                        the same signer  
 

•  For regular payments; all signatures must be valid, any subsequent transaction 
must be used only one time in the blockchain(double-spendin), and the sum of the 
input values should be at least the sum of the output for the acceptance of tx 
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How do we create this challenge ? 
 

(i-1)th block can be used to derive that challenge, but it can 
slow down the consensus.  
•  there may be many chains; rational miners can create 

different challenges for different chains, and try to create 
proofs for different chains since it is easy to do it 

 

Derive the challenge from the hash of block i – Δ 
•  the probability of multiple chains surviving for more than Δ 

blocks decreases exponentially  
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For a set of valid proofs π1=(pk1,λ1,c1, a1),…, πm=(pkm,λm,cm, am), 
Q(πi) should be defined in a way that the probability that πi has 
the best quality among π1,…, πm corresponds to ith miner’s 
fraction of the total space in the network, which is 
 

                            Ni / (N1 + … + Nm) 
 

where Ni is the space committed to λi 
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-  the challenge is derived from proof chain that does not contain 
transactions. Thus, a prover can create at most one valid proof per 
challenge 

•  Mining on mutiple chains: 
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can 

work on all known chains in parallel to increase their profits, even to try 
double-spending and selfish-mining. 

-  the challenge is derived the hash of block i – Δ,  and for any challenge 
there is a single proof. Besides, the protocol imposes a penalty via the 
penalty transactions (half of the reward for bad block is given to the 
creator of the penalty transaction, and other half is diminished)  
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