
Murat Osmanoglu

Proof of Space

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal
a few disk accesses with minimal computation

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal
a few disk accesses with minimal computation

•  even if the reward is much smaller than the cost of buying disk space
for mining, space still be dedicated towards mining

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal
a few disk accesses with minimal computation

•  even if the reward is much smaller than the cost of buying disk space
for mining, space still be dedicated towards mining

unused disk space is available on many personal computers

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal
a few disk accesses with minimal computation

•  even if the reward is much smaller than the cost of buying disk space
for mining, space still be dedicated towards mining

unused disk space is available on many personal computers

most mining is currently done by specialized ASICs, and they have no use
other than Bitcoin mining. No such devices required for PoSpace

Proof of Space
(SpaceMint)

•  to create a block, miners invest disk space instead of computing
power

dedicating more disk space means higher chance to create a block

•  once the dedicated space is initialized, the cost of mining is marginal
a few disk accesses with minimal computation

•  even if the reward is much smaller than the cost of buying disk space
for mining, space still be dedicated towards mining

unused disk space is available on many personal computers

most mining is currently done by specialized ASICs, and they have no use
other than Bitcoin mining. No such devices required for PoSpace

•  a simple idea can be applied to Bitcoin to avoid ‘mining pools’ : instead
of applying the hash function to a nonce directly, it will be applied to
the signature of the nonce (similar idea can be adapted to
SpaceMint)

Proof of Space
(SpaceMint)

Prover

Proof of Space
(SpaceMint)

Verifier

Prover

Proof of Space
(SpaceMint)

Verifier

At the initialization,
prover stores some data

F of size N

At the initialization,
verifier keeps only small
piece of information S

about F

Prover

Proof of Space
(SpaceMint)

Verifier

At the initialization,
prover stores some data

F of size N

At the initialization,
verifier keeps only small
piece of information S

about F

At any time later,
verifier initialize a proof

execution phase

Prover

Proof of Space
(SpaceMint)

Verifier

At the initialization,
prover stores some data

F of size N

At the initialization,
verifier keeps only small
piece of information S

about F

At any time later,
verifier initialize a proof

execution phase

At the end,
verifier outputs reject

or accept

Prover

Proof of Space
(SpaceMint)

Verifier

At the initialization,
prover stores some data

F of size N

At the initialization,
verifier keeps only small
piece of information S

about F

At any time later,
verifier initialize a proof

execution phase

At the end,
verifier outputs reject

or accept

•  we demand that verifier is highly efficient in both phases, and prover is highly
efficient in the execution (generating the proof) and in the access to F

Prover

Proof of Space
(SpaceMint)

Verifier

At the initialization,
prover stores some data

F of size N

At the initialization,
verifier keeps only small
piece of information S

about F

At any time later,
verifier initialize a proof

execution phase

At the end,
verifier outputs reject

or accept

•  we demand that verifier is highly efficient in both phases, and prover is highly
efficient in the execution (generating the proof) and in the access to F

•  be careful; a cheating prover can delete F after initialization

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Parameter : G = (V, E) s.t. lVl=N, D is efficiently samplable distribution over vertices

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Parameter : G = (V, E) s.t. lVl=N, D is efficiently samplable distribution over vertices
•  First prover creates S=w(V) and a short proof λ from S, then keeps the graph and

gives λ to verifier

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Parameter : G = (V, E) s.t. lVl=N, D is efficiently samplable distribution over vertices
•  First prover creates S=w(V) and a short proof λ from S, then keeps the graph and

gives λ to verifier
•  Verifier samples a subset CçD, and gives C to P

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Parameter : G = (V, E) s.t. lVl=N, D is efficiently samplable distribution over vertices
•  First prover creates S=w(V) and a short proof λ from S, then keeps the graph and

gives λ to verifier
•  Verifier samples a subset CçD, and gives C to P
•  Prover creates an answer A=w(C) for C

Graph Pebbling

•  consider a directed acyclic graph G = (V E)

•  every vertex is associated with a value w(v)
in {0,1}L

Proof of Space
(SpaceMint)

v1	 v2	

v3	

v5	

v4	w(v1) = H(v1)	

w(v2) = H(v2, w(v1))	

w(v3) = H(v3, w(v1))	 w(v4) = H(v4, w(v2), w(v3))	

w(v5) = H(v5, w(v2), w(v3), w(v4))	

Parameter : G = (V, E) s.t. lVl=N, D is efficiently samplable distribution over vertices
•  First prover creates S=w(V) and a short proof λ from S, then keeps the graph and

gives λ to verifier
•  Verifier samples a subset CçD, and gives C to P
•  Prover creates an answer A=w(C) for C
•  Verifier accepts if A is compatible with λ

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

v4	

v5	

v6	

v7	

v8	

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

v4	

xa= H(va)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

•  Verifier sends a challenge, for instance
3, to prover

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

•  Verifier sends a challenge, for instance
3, to prover

•  Prover sends v3 together with
{x4,x12,x5678} to verifier

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

•  Verifier sends a challenge, for instance
3, to prover

•  Prover sends v3 together with
{x4,x12,x5678} to verifier

•  Verifier accepts if

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

•  Verifier sends a challenge, for instance
3, to prover

•  Prover sends v3 together with
{x4,x12,x5678} to verifier

•  Verifier accepts if
 λ=H(H(x12,H(H(v3),x4)),x5678)

Hash Trees for Graph Pebbling

Proof of Space
(SpaceMint)

v1	

v2	

v3	

x12	

v4	

xa= H(va)

xab=H(xa,xb)

xabcd=H(xab, xcd)

λ = H(x1234,x5678)

v5	

v6	

v7	

v8	

x1	

x2	

x3	

x4	

x5	

x6	

x7	

x8	

x34	

x56	

x78	

x1234	

x5678	

λ	

•  Prover creates hash tree and sends λ	
to verifier

•  Verifier sends a challenge, for instance
3, to prover

•  Prover sends v3 together with
{x4,x12,x5678} to verifier

•  Verifier accepts if
 λ= λ=H(H(x12,H(H(v3),x4)),x5678)

If H is collusion-resistant, then prover must
keep all the data to be able to provide valid proof

Challenges

Proof of Space
(SpaceMint)

Challenges

•  Proof of Space requires interactions, it’s hard to adapt it to the

blockchain settings

Proof of Space
(SpaceMint)

Challenges

•  Proof of Space requires interactions, it’s hard to adapt it to the

blockchain settings

•  Generating a PoSpace is computationally cheap. It needs some clever
way to decide which of many proof wins

Proof of Space
(SpaceMint)

Challenges

•  Proof of Space requires interactions, it’s hard to adapt it to the

blockchain settings

•  Generating a PoSpace is computationally cheap. It needs some clever
way to decide which of many proof wins

a miner should learn if he is a winner without any interaction

Proof of Space
(SpaceMint)

Challenges

•  Proof of Space requires interactions, it’s hard to adapt it to the

blockchain settings

•  Generating a PoSpace is computationally cheap. It needs some clever
way to decide which of many proof wins

a miner should learn if he is a winner without any interaction

•  nothing-at-stake : if mining is computationally cheap, then miners can
mine on multiple chains, or try to create many different blocks with
a single proof

Proof of Space
(SpaceMint)

Challenges

•  Proof of Space requires interactions, it’s hard to adapt it to the

blockchain settings

•  Generating a PoSpace is computationally cheap. It needs some clever
way to decide which of many proof wins

a miner should learn if he is a winner without any interaction

•  nothing-at-stake : if mining is computationally cheap, then miners can
mine on multiple chains, or try to create many different blocks with
a single proof

slows down consensus

gives chance to cheating miners to get a greater reward

enables double-spending attacks by someone controlling less than 50% of
the space

Proof of Space
(SpaceMint)

Construction

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk),

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1

PC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

PC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

Sigi : current block index i

PC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

Sigi : current block index i
 miner’s signature on Trani

PC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

Sigi : current block index i
 miner’s signature on Trani
 miner’s signature on Sigi-1

PC	

SC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

Sigi : current block index i
 miner’s signature on Trani
 miner’s signature on Sigi-1

Trani : current block index i
 list of transactions

PC	

SC	

Construction

•  a miner joins the network by announcing its space commitment (pk, λ) via a
special transaction.
Genè(pk,sk), Init(pk,N)è(S,λ) where N is the size of the space in terms of
bits that the miner contributes to the mining effort

Proof of Space
(SpaceMint)

Hashi

Sigi

Trani

Hashi+1

Sigi+1

Trani+1

Blocki	 Blocki+1	
Hashi : current block index i
 miner’s signature on Hashi-1
 a space proof that contains pk

Sigi : current block index i
 miner’s signature on Trani
 miner’s signature on Sigi-1

Trani : current block index i
 list of transactions

PC	

SC	

•  Once an honest miner adds a new block to the chain, the transactions up
to this block cannot be changed, even by someone that holds all secret
keys of the miners that added all the previous blocks. 	

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

-  space commitments : has the form tx = (commit, txID, (pk, λ)) where

 Init(pk,N) è(pk, λ)

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

-  space commitments : has the form tx = (commit, txID, (pk, λ)) where

 Init(pk,N) è(pk, λ)

-  penalties : has the form tx = (penalty, txID, pk, prf)

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

-  space commitments : has the form tx = (commit, txID, (pk, λ)) where

 Init(pk,N) è(pk, λ)

-  penalties : has the form tx = (penalty, txID, pk, prf)

 pk is the public key of the transaction creator

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

-  space commitments : has the form tx = (commit, txID, (pk, λ)) where

 Init(pk,N) è(pk, λ)

-  penalties : has the form tx = (penalty, txID, pk, prf)

 pk is the public key of the transaction creator

 prf is the proof indicating that two blocks of same index signed by
 the same signer

Proof of Space
(SpaceMint)

Construction

•  three types of transactions :
-  regular payments : has the form tx = (payment, txID, in, out) where
 txID is a unique ID (no two tx in the blockchain can have same ID

 in is a list of input coins, in = (in1,…,inn) where
 inj = (txIDj,kj,sigj) such that kj is an index that indicates the
 sender of txIDj

 out is a list of output coins, out = (out1,…,outm) where outi=(pki,vi)
 such that

-  space commitments : has the form tx = (commit, txID, (pk, λ)) where

 Init(pk,N) è(pk, λ)

-  penalties : has the form tx = (penalty, txID, pk, prf)

 pk is the public key of the transaction creator

 prf is the proof indicating that two blocks of same index signed by
 the same signer

•  For regular payments; all signatures must be valid, any subsequent transaction
must be used only one time in the blockchain(double-spendin), and the sum of the
input values should be at least the sum of the output for the acceptance of tx

Construction

•  Mining :

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

-  compute the proof of space a = (a1,…,au)

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

-  compute the proof of space a = (a1,…,au)

-  compute the quality Q(pk,λ,c,a) of the proof

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

-  compute the proof of space a = (a1,…,au)

-  compute the quality Q(pk,λ,c,a) of the proof

-  if the quality is high enough (there is a realistic chance to be the best
proof in that period), compute the proof of correct commitment b = (b1,
…,bv), create a block, send the block to the network

Proof of Space
(SpaceMint)

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

-  compute the proof of space a = (a1,…,au)

-  compute the quality Q(pk,λ,c,a) of the proof

-  if the quality is high enough (there is a realistic chance to be the best
proof in that period), compute the proof of correct commitment b = (b1,
…,bv), create a block, send the block to the network

Proof of Space
(SpaceMint)

How do we create this challenge ?

(i-1)th block can be used to derive that challenge, but it can
slow down the consensus.
•  there may be many chains; rational miners can create

different challenges for different chains, and try to create
proofs for different chains since it is easy to do it

Derive the challenge from the hash of block i – Δ
•  the probability of multiple chains surviving for more than Δ

blocks decreases exponentially

Construction

•  Mining :

-  extract the hash value of the last block in the best chain so far, and a
challenge c which is used to derive two long random strings Cu, Cv

-  compute challenges Chal(n,u,Cu) = (c1,…,cu)

-  compute the proof of space a = (a1,…,au)

-  compute the quality Q(pk,λ,c,a) of the proof

-  if the quality is high enough (there is a realistic chance to be the best
proof in that period), compute the proof of correct commitment b = (b1,
…,bv), create a block, send the block to the network

Proof of Space
(SpaceMint)

For a set of valid proofs π1=(pk1,λ1,c1, a1),…, πm=(pkm,λm,cm, am),
Q(πi) should be defined in a way that the probability that πi has
the best quality among π1,…, πm corresponds to ith miner’s
fraction of the total space in the network, which is

 Ni / (N1 + … + Nm)

where Ni is the space committed to λi

Nothing-at-Stake

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on many different blocks (just try different transactions) till
finding a good one that will allow them to generate good proofs for
future

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on many different blocks (just try different transactions) till
finding a good one that will allow them to generate good proofs for
future

-  the challenge is derived from proof chain that does not contain
transactions. Thus, a prover can create at most one valid proof per
challenge

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on many different blocks (just try different transactions) till
finding a good one that will allow them to generate good proofs for
future

-  the challenge is derived from proof chain that does not contain
transactions. Thus, a prover can create at most one valid proof per
challenge

•  Mining on mutiple chains:

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on many different blocks (just try different transactions) till
finding a good one that will allow them to generate good proofs for
future

-  the challenge is derived from proof chain that does not contain
transactions. Thus, a prover can create at most one valid proof per
challenge

•  Mining on mutiple chains:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on all known chains in parallel to increase their profits, even to try
double-spending and selfish-mining.

Proof of Space
(SpaceMint)

Nothing-at-Stake

•  Grinding:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on many different blocks (just try different transactions) till
finding a good one that will allow them to generate good proofs for
future

-  the challenge is derived from proof chain that does not contain
transactions. Thus, a prover can create at most one valid proof per
challenge

•  Mining on mutiple chains:
-  In PoSpace, it’s computationally easy to generate proofs. So, miners can

work on all known chains in parallel to increase their profits, even to try
double-spending and selfish-mining.

-  the challenge is derived the hash of block i – Δ, and for any challenge
there is a single proof. Besides, the protocol imposes a penalty via the
penalty transactions (half of the reward for bad block is given to the
creator of the penalty transaction, and other half is diminished)

Proof of Space
(SpaceMint)

