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Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

* the adversary is computationally bound :
- cannot produce a valid signature of a non-faulty node
- cannot compute an input of the hash function from the output

- cannot find fwo messages having the same hash value
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Objectives

« Analgorithm that can be used to implement any deterministic
replicated service with a state and some operations

« the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

- (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

- (liveness) clients eventually receive replies to their requests,
provided at most m replicas are faulty and delay(t) does not grow
faster than t indefinitely

delay(t) is the time between the moment + when a message is
sent for the first time and the moment when it is received by its
destination
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The Algorithm

the set of replicas is denotedas R={0, 1, . ., IRI - 1}

IRI = 3f + 1 where f is the maximum number of replicas that
may be faulty

the replicas move through a succession of configuration called
views

In a view, one replica will be the primary and the others are
backups
the primary of a view will be the replica p such that

p = vmod IR

where v is the view number
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* the client waits for f +1
replies from different replicas
with the same result
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After receiving a request message [REQUEST, o, T, ¢c]sz; from
a client, the primary assigns a sequence number n to the
request, and broadcasts a pre-prepare message

[[PRE"PREPARE, V, n, d]SIG/ m]

to all backups and appends the message to its LOG where m is
the client's request and d is the digest of m
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A backup accepts [[PRE-PREPARE, v, n, d]szg, m] if

- the signatures in Pre-Prepare and m are correct and d is
the digest of m

- itisinview v

- it has not accepted a pre-prepare message for view v and
sequence number n containing a different digest
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« If backup i accepts [[PRE-PREPARE, v, n, d]srg, m], it
broadcasts a prepare message

[PREPARE, v, n, d, ilsc;

to all other replicas and appends both messages to its LOG



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

A w O~ O

A backup accepts [PREPARE, v, n, d, il if
- the signature in Prepare is valid
- the view number v is equal the current view number

- it has not accepted a prepare message for view v and
sequence number n containing a different digest



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

 If 2f prepares message from different backups that match

the pre-prepare of the backup i holds, the backup i broadcasts
a commit message

[COMMIT, v, n,d, ilste;
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request pre-prepare prepare commit reply
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A backup accepts [COMMIT, v, n, d, ilsze if
- the signature in Commit is valid

- the view number v is equal the current view number

- it has not accepted a commit message for view v and
sequence number n containing a different digest

 Backups append commit messages to its LOG after accepting it
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« If 2f commit messages from different backups that match the

pre-prepare of the backup i holds, the backup i sends a reply
message

[REPLY, v, t,c, r,ilse.

where v is the current view, t is the timestamp of the
corresponding request, i is the replica number, r is the result
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Garbage Collection

* when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

« when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]lszs.; to other replicas where d
is the digest of the state

« each replica collects checkpoint messages in its LOG unfil it
has 2f + 1 of them (proof for checkpoint)

 a checkpoint with a proof becomes stable and replica discards
all pre-prepare, prepare, and commit messages with sequence
number less than or equal to n from its LOG, and also discards
all earlier checkpoints and checkpoint messages
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View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where

- nis the sequence number of the last stable checkpoint s
known to i

- Cis aset of 2f + 1 valid checkpoint messages proving the
correctness of s

- P is aset containing a set P, for each request m, prepared
at I with a sequence number higher than n

- each P, contains a valid pre-prepare message and 2f
matching prepare message
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View Changes(Liveness)

« When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

[NEW-VIEW, v +1,V, Olgre.,
to other replicas where

- Vs a set containing the valid view-change messages
received by the primary + the primary produced

- O is a set of pre-prepare messages
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Why 2f + 1 (Safety)?

f + 1 messages as f + 1 messages as
[PREPARE, v, n, dy, ils1s.i [PREPARE, v, n, d,, ils1c.i

AN

f faulty nodes

3f+2>3f+1



