PBFT

Murat Osmanoglu



Practical Byzantine Fault Tolerance




Practical Byzantine Fault Tolerance




Practical Byzantine Fault Tolerance

« distributed software is often
structured in terms of clients and
service




Practical Byzantine Fault Tolerance

distributed software is often
structured in terms of clients and
service

service is modeled as a state
machine that is replicated across
different nodes in a distributed
system



Practical Byzantine Fault Tolerance

« distributed software is often
structured in terms of clients and
service

« service is modeled as a state
machine that is replicated across
different nodes in a distributed
system




Practical Byzantine Fault Tolerance

distributed software is often
structured in terms of clients and
service

service is modeled as a state
machine that is replicated across
different nodes in a distributed
system



Practical Byzantine Fault Tolerance

distributed software is often
structured in terms of clients and
service

service is modeled as a state
machine that is replicated across
different nodes in a distributed
system



Practical Byzantine Fault Tolerance

Assumptions




Practical Byzantine Fault Tolerance

Assumptions
« the system is asynchronous



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

* the adversary is computationally bound :



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

* the adversary is computationally bound :

- cannot produce a valid signature of a non-faulty node



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

* the adversary is computationally bound :
- cannot produce a valid signature of a non-faulty node

- cannot compute an input of the hash function from the output



Practical Byzantine Fault Tolerance

Assumptions

« the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

« nodes can be failures independently

« there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

* the adversary is computationally bound :
- cannot produce a valid signature of a non-faulty node
- cannot compute an input of the hash function from the output

- cannot find fwo messages having the same hash value



Practical Byzantine Fault Tolerance

Objectives




Practical Byzantine Fault Tolerance

Objectives

An algorithm that can be used to implement any deterministic
replicated service with a state and some operations



Practical Byzantine Fault Tolerance

Objectives

« Analgorithm that can be used to implement any deterministic
replicated service with a state and some operations

« the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total



Practical Byzantine Fault Tolerance

Objectives

« Analgorithm that can be used to implement any deterministic
replicated service with a state and some operations

« the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

- (safety) all faulty replicas agree on a total order for the
execution of requests despite failures



Practical Byzantine Fault Tolerance

Objectives

« Analgorithm that can be used to implement any deterministic
replicated service with a state and some operations

« the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

- (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

- (liveness) clients eventually receive replies to their requests,
provided at most m replicas are faulty and delay(t) does not grow
faster than t indefinitely



Practical Byzantine Fault Tolerance

Objectives

« Analgorithm that can be used to implement any deterministic
replicated service with a state and some operations

« the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

- (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

- (liveness) clients eventually receive replies to their requests,
provided at most m replicas are faulty and delay(t) does not grow
faster than t indefinitely

delay(t) is the time between the moment + when a message is
sent for the first time and the moment when it is received by its
destination



Practical Byzantine Fault Tolerance

The Algorithm




Practical Byzantine Fault Tolerance

The Algorithm
« the set of replicas is denotedasR={0, 1, . . ., IRI - 1}



Practical Byzantine Fault Tolerance

The Algorithm
« the set of replicas is denotedasR={0, 1, . . ., IRI - 1}

IRI = 3f + 1 where f is the maximum number of replicas that
may be faulty



Practical Byzantine Fault Tolerance

The Algorithm
« the set of replicas is denotedasR={0, 1, . . ., IRI - 1}

* |RI= 3f + 1 where f is the maximum number of replicas that
may be faulty

 the replicas move through a succession of configuration called
views



Practical Byzantine Fault Tolerance

The Algorithm

the set of replicas is denotedas R={0, 1, . ., IRI - 1}

IRI = 3f + 1 where f is the maximum number of replicas that
may be faulty

the replicas move through a succession of configuration called
views

In a view, one replica will be the primary and the others are
backups



Practical Byzantine Fault Tolerance

The Algorithm

the set of replicas is denotedas R={0, 1, . ., IRI - 1}

IRI = 3f + 1 where f is the maximum number of replicas that
may be faulty

the replicas move through a succession of configuration called
views

In a view, one replica will be the primary and the others are
backups
the primary of a view will be the replica p such that

p = vmod IR

where v is the view number



Practical Byzantine Fault Tolerance




Practical Byzantine Fault Tolerance




Practical Byzantine Fault Tolerance

(3f + 1) replicas




Practical Byzantine Fault Tolerance

(3f + 1) replicas

primary /




Practical Byzantine Fault Tolerance

3




Practical Byzantine Fault Tolerance




Practical Byzantine Fault Tolerance

* the client waits for f +1
replies from different replicas
with the same result



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

A w O~ O




Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

A w O~ O

* client C requests the execution of state machine operation o
by sending a [REQUEST, o, 1, c]s;; message to the primary



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

A w O~ O

After receiving a request message [REQUEST, o, T, ¢c]sz; from

a client, the primary assigns a sequence number n to the
request,



Practical Byzantine Fault Tolerance

request pre-prepare prepare

commit

reply

\

N

A w O~ O

AN
N\

After receiving a request message [REQUEST, o, T, ¢c]sz; from
a client, the primary assigns a sequence number n to the

request, and broadcasts a pre-prepare message

[[PRE"PREPARE, V, n, d]SIG/ m]

to all backups and



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

AN
NN
N

A w O~ O

After receiving a request message [REQUEST, o, T, ¢c]sz; from
a client, the primary assigns a sequence number n to the
request, and broadcasts a pre-prepare message

[[PRE"PREPARE, V, n, d]SIG/ m]

to all backups and appends the message to its LOG where m is
the client's request and d is the digest of m



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

N
NN
Ny

A w O~ O

A backup accepts [[PRE-PREPARE, v, n, d]szg, m] if



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

N
NN
Ny

A w O~ O

A backup accepts [[PRE-PREPARE, v, n, d]szg, m] if

- the signatures in Pre-Prepare and m are correct and d is
the digest of m



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

N
NN
Ny

A w O~ O

A backup accepts [[PRE-PREPARE, v, n, d]szg, m] if

- the signatures in Pre-Prepare and m are correct and d is
the digest of m

- itisinview v



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\

N
NN
Ny

A w O~ O

A backup accepts [[PRE-PREPARE, v, n, d]szg, m] if

- the signatures in Pre-Prepare and m are correct and d is
the digest of m

- itisinview v

- it has not accepted a pre-prepare message for view v and
sequence number n containing a different digest



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

« If backup i accepts [[PRE-PREPARE, v, n, d]srg, m], it
broadcasts a prepare message

[PREPARE, v, n, d, ils1c..

to all other replicas and



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

« If backup i accepts [[PRE-PREPARE, v, n, d]srg, m], it
broadcasts a prepare message

[PREPARE, v, n, d, ilsc;

to all other replicas and appends both messages to its LOG



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

A w O~ O

A backup accepts [PREPARE, v, n, d, il if
- the signature in Prepare is valid
- the view number v is equal the current view number

- it has not accepted a prepare message for view v and
sequence number n containing a different digest



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\
¥
N

A w O~ O

 If 2f prepares message from different backups that match

the pre-prepare of the backup i holds, the backup i broadcasts
a commit message

[COMMIT, v, n,d, ilste;



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

A w O~ O

A backup accepts [COMMIT, v, n, d, ilsze if
- the signature in Commit is valid

- the view number v is equal the current view number

- it has not accepted a commit message for view v and
sequence number n containing a different digest

 Backups append commit messages to its LOG after accepting it



Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply

\
¥
N

/

A w O~ O

« If 2f commit messages from different backups that match the

pre-prepare of the backup i holds, the backup i sends a reply
message

[REPLY, v, t,c, r,ilse.

where v is the current view, t is the timestamp of the
corresponding request, i is the replica number, r is the result



Practical Byzantine Fault Tolerance

Garbage Collection




Practical Byzantine Fault Tolerance

Garbage Collection

* when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints



Practical Byzantine Fault Tolerance

Garbage Collection

* when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

« when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]lszs.; to other replicas where d
is the digest of the state



Practical Byzantine Fault Tolerance

Garbage Collection

* when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

« when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]lszs.; to other replicas where d
is the digest of the state

« each replica collects checkpoint messages in its LOG unfil it
has 2f + 1 of them (proof for checkpoint)



Practical Byzantine Fault Tolerance

Garbage Collection

* when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

« when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]lszs.; to other replicas where d
is the digest of the state

« each replica collects checkpoint messages in its LOG unfil it
has 2f + 1 of them (proof for checkpoint)

 a checkpoint with a proof becomes stable and replica discards
all pre-prepare, prepare, and commit messages with sequence
number less than or equal to n from its LOG, and also discards
all earlier checkpoints and checkpoint messages



Practical Byzantine Fault Tolerance

View Changes(Liveness)




Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not



Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by

broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where



Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by

broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where

- nis the sequence number of the last stable checkpoint s
known to i



Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where

- nis the sequence number of the last stable checkpoint s
known to i

- Cis aset of 2f + 1 valid checkpoint messages proving the
correctness of s



Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by

broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where

- nis the sequence number of the last stable checkpoint s
known to i

- Cis aset of 2f + 1 valid checkpoint messages proving the
correctness of s

- P is aset containing a set P, for each request m, prepared
at I with a sequence number higher than n



Practical Byzantine Fault Tolerance

View Changes(Liveness)

* Backups use a timer to check whether the primary fails or not

« when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, ilss.; To other
replicas where

- nis the sequence number of the last stable checkpoint s
known to i

- Cis aset of 2f + 1 valid checkpoint messages proving the
correctness of s

- P is aset containing a set P, for each request m, prepared
at I with a sequence number higher than n

- each P, contains a valid pre-prepare message and 2f
matching prepare message



Practical Byzantine Fault Tolerance

View Changes(Liveness)

When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

[NEW-VIEW, v +1,V, Olsse.,

to other replicas where



Practical Byzantine Fault Tolerance

View Changes(Liveness)

« When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

[NEW-VIEW, v +1,V, Olgre.,
to other replicas where

- Vs a set containing the valid view-change messages
received by the primary + the primary produced



Practical Byzantine Fault Tolerance

View Changes(Liveness)

« When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

[NEW-VIEW, v +1,V, Olgre.,
to other replicas where

- Vs a set containing the valid view-change messages
received by the primary + the primary produced

- O is a set of pre-prepare messages



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?




Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f faulty nodes



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f messages as
[PREPARE, v, n, dy, ils1s.i

f faulty nodes



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f messages as f messages as
[PREPARE, v, n, dy, ils1s.i [PREPARE, v, n, d,, ils1c.i

f faulty nodes



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f messages as f messages as
[PREPARE, v, n, dy, ils1s.i [PREPARE, v, n, d,, ils1c.i

AN

f faulty nodes



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f messages as f messages as
[PREPARE, v, n, dy, ils1s.i [PREPARE, v, n, d,, ils1c.i

AN

f faulty nodes

3f<3f+1



Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

f + 1 messages as f + 1 messages as
[PREPARE, v, n, dy, ils1s.i [PREPARE, v, n, d,, ils1c.i

AN

f faulty nodes

3f+2>3f+1



