
Murat Osmanoglu

PBFT

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

•  distributed software is often
structured in terms of clients and
service

Practical Byzantine Fault Tolerance

•  distributed software is often
structured in terms of clients and
service

•  service is modeled as a state
machine that is replicated across
different nodes in a distributed
system

Practical Byzantine Fault Tolerance

•  distributed software is often
structured in terms of clients and
service

•  service is modeled as a state
machine that is replicated across
different nodes in a distributed
system

Practical Byzantine Fault Tolerance

•  distributed software is often
structured in terms of clients and
service

•  service is modeled as a state
machine that is replicated across
different nodes in a distributed
system

Practical Byzantine Fault Tolerance

•  distributed software is often
structured in terms of clients and
service

•  service is modeled as a state
machine that is replicated across
different nodes in a distributed
system

Assumptions

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

•  there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

•  there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

•  the adversary is computationally bound :

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

•  there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

•  the adversary is computationally bound :
-  cannot produce a valid signature of a non-faulty node

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

•  there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

•  the adversary is computationally bound :
-  cannot produce a valid signature of a non-faulty node

-  cannot compute an input of the hash function from the output

Practical Byzantine Fault Tolerance

Assumptions

•  the system is asynchronous

the network may fail to deliver messages, delay them, duplicate
them, or deliver them out of order

•  nodes can be failures independently

•  there is a very strong adversary that can coordinate faulty
nodes, delay communication, or delay correct nodes

•  the adversary is computationally bound :
-  cannot produce a valid signature of a non-faulty node

-  cannot compute an input of the hash function from the output

-  cannot find two messages having the same hash value

Practical Byzantine Fault Tolerance

Objectives

Practical Byzantine Fault Tolerance

Objectives

•  An algorithm that can be used to implement any deterministic
replicated service with a state and some operations

Practical Byzantine Fault Tolerance

Objectives

•  An algorithm that can be used to implement any deterministic
replicated service with a state and some operations

•  the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

Practical Byzantine Fault Tolerance

Objectives

•  An algorithm that can be used to implement any deterministic
replicated service with a state and some operations

•  the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

-  (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

Practical Byzantine Fault Tolerance

Objectives

•  An algorithm that can be used to implement any deterministic
replicated service with a state and some operations

•  the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

-  (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

-  (liveness) clients eventually receive replies to their requests,
provided at most m replicas are faulty and delay(t) does not grow
faster than t indefinitely

Practical Byzantine Fault Tolerance

Objectives

•  An algorithm that can be used to implement any deterministic
replicated service with a state and some operations

•  the algorithm provides safety and liveness assuming no more
than m faulty replicas when there are 3m+1 replicas at total

-  (safety) all faulty replicas agree on a total order for the
execution of requests despite failures

-  (liveness) clients eventually receive replies to their requests,
provided at most m replicas are faulty and delay(t) does not grow
faster than t indefinitely

 delay(t) is the time between the moment t when a message is
 sent for the first time and the moment when it is received by its
 destination

Practical Byzantine Fault Tolerance

The Algorithm

Practical Byzantine Fault Tolerance

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

Practical Byzantine Fault Tolerance

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

Practical Byzantine Fault Tolerance

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

•  the replicas move through a succession of configuration called
views

Practical Byzantine Fault Tolerance

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

•  the replicas move through a succession of configuration called
views

•  In a view, one replica will be the primary and the others are
backups

Practical Byzantine Fault Tolerance

The Algorithm

•  the set of replicas is denoted as R = {0, 1, . . ., lRl – 1}

•  lRl = 3f + 1 where f is the maximum number of replicas that
may be faulty

•  the replicas move through a succession of configuration called
views

•  In a view, one replica will be the primary and the others are
backups

•  the primary of a view will be the replica p such that

 p = v mod lRl

 where v is the view number

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

(3f + 1) replicas 	

Practical Byzantine Fault Tolerance

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Practical Byzantine Fault Tolerance

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Practical Byzantine Fault Tolerance

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Practical Byzantine Fault Tolerance

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

Practical Byzantine Fault Tolerance

primary	

backup	

backup	

backup	

(3f + 1) replicas 	

•  the client waits for f + 1
replies from different replicas
with the same result	

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  client C requests the execution of state machine operation o
by sending a [REQUEST, o, t, c]SIG message to the primary

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  After receiving a request message [REQUEST, o, t, c]SIG from
a client, the primary assigns a sequence number n to the
request,

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  After receiving a request message [REQUEST, o, t, c]SIG from
a client, the primary assigns a sequence number n to the
request, and broadcasts a pre-prepare message

 [[PRE-PREPARE, v, n, d]SIG, m]

 to all backups and

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  After receiving a request message [REQUEST, o, t, c]SIG from
a client, the primary assigns a sequence number n to the
request, and broadcasts a pre-prepare message

 [[PRE-PREPARE, v, n, d]SIG, m]

 to all backups and appends the message to its LOG where m is
 the client’s request and d is the digest of m

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [[PRE-PREPARE, v, n, d]SIG, m] if

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [[PRE-PREPARE, v, n, d]SIG, m] if

-  the signatures in Pre-Prepare and m are correct and d is
the digest of m

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [[PRE-PREPARE, v, n, d]SIG, m] if

-  the signatures in Pre-Prepare and m are correct and d is
the digest of m

-  it is in view v

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [[PRE-PREPARE, v, n, d]SIG, m] if

-  the signatures in Pre-Prepare and m are correct and d is
the digest of m

-  it is in view v

-  it has not accepted a pre-prepare message for view v and
sequence number n containing a different digest

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  If backup i accepts [[PRE-PREPARE, v, n, d]SIG, m], it
broadcasts a prepare message

 [PREPARE, v, n, d, i]SIG-i

 to all other replicas and

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  If backup i accepts [[PRE-PREPARE, v, n, d]SIG, m], it
broadcasts a prepare message

 [PREPARE, v, n, d, i]SIG-i

 to all other replicas and appends both messages to its LOG

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [PREPARE, v, n, d, i]SIG-i if

-  the signature in Prepare is valid

-  the view number v is equal the current view number

-  it has not accepted a prepare message for view v and
sequence number n containing a different digest

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  If 2f prepares message from different backups that match
the pre-prepare of the backup i holds, the backup i broadcasts
a commit message

 [COMMIT, v, n, d, i]SIG-i

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  A backup accepts [COMMIT, v, n, d, i]SIG-i if

-  the signature in Commit is valid

-  the view number v is equal the current view number

-  it has not accepted a commit message for view v and
sequence number n containing a different digest

•  Backups append commit messages to its LOG after accepting it

Practical Byzantine Fault Tolerance

request pre-prepare prepare commit reply
C	
1	
2	
3	
4	

•  If 2f commit messages from different backups that match the
pre-prepare of the backup i holds, the backup i sends a reply
message

 [REPLY, v, t, c, r, i]SIG-i

 where v is the current view, t is the timestamp of the
 corresponding request, i is the replica number, r is the result

Garbage Collection

Practical Byzantine Fault Tolerance

Garbage Collection

•  when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

Practical Byzantine Fault Tolerance

Garbage Collection

•  when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

•  when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]SIG-i to other replicas where d
is the digest of the state

Practical Byzantine Fault Tolerance

Garbage Collection

•  when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

•  when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]SIG-i to other replicas where d
is the digest of the state

•  each replica collects checkpoint messages in its LOG until it
has 2f + 1 of them (proof for checkpoint)

Practical Byzantine Fault Tolerance

Garbage Collection

•  when a request with a sequence number divisible by some
constant is executed, the replicas create checkpoints

•  when a replica i produces a checkpoint, it broadcasts a
message [CHECKPOINT, n, d, i]SIG-i to other replicas where d
is the digest of the state

•  each replica collects checkpoint messages in its LOG until it
has 2f + 1 of them (proof for checkpoint)

•  a checkpoint with a proof becomes stable and replica discards
all pre-prepare, prepare, and commit messages with sequence
number less than or equal to n from its LOG, and also discards
all earlier checkpoints and checkpoint messages

Practical Byzantine Fault Tolerance

View Changes(Liveness)

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, i]SIG-i to other
replicas where

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, i]SIG-i to other
replicas where

-  n is the sequence number of the last stable checkpoint s
known to i

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, i]SIG-i to other
replicas where

-  n is the sequence number of the last stable checkpoint s
known to i

-  C is a set of 2f + 1 valid checkpoint messages proving the
correctness of s

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, i]SIG-i to other
replicas where

-  n is the sequence number of the last stable checkpoint s
known to i

-  C is a set of 2f + 1 valid checkpoint messages proving the
correctness of s

-  P is a set containing a set Pm for each request m, prepared
at I with a sequence number higher than n

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  Backups use a timer to check whether the primary fails or not

•  when the timer of backup i expires in view v, the backup
starts a view change to move the system to view v + 1 by
broadcasting [VIEW-CHANGE, v + 1, n, C, P, i]SIG-i to other
replicas where

-  n is the sequence number of the last stable checkpoint s
known to i

-  C is a set of 2f + 1 valid checkpoint messages proving the
correctness of s

-  P is a set containing a set Pm for each request m, prepared
at I with a sequence number higher than n

-  each Pm contains a valid pre-prepare message and 2f
matching prepare message

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

 [NEW-VIEW, v + 1, V, O]SIG-p

to other replicas where

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

 [NEW-VIEW, v + 1, V, O]SIG-p

to other replicas where

-  V is a set containing the valid view-change messages
received by the primary + the primary produced

Practical Byzantine Fault Tolerance

View Changes(Liveness)

•  When the primary p of v + 1 receives 2f valid view-change
messages from other replicas, it broadcasts a message

 [NEW-VIEW, v + 1, V, O]SIG-p

to other replicas where

-  V is a set containing the valid view-change messages
received by the primary + the primary produced

-  O is a set of pre-prepare messages

Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f faulty nodes

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f messages as

[PREPARE, v, n, d1, i]SIG-i

f faulty nodes

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f messages as

[PREPARE, v, n, d1, i]SIG-i

f messages as

[PREPARE, v, n, d2, i]SIG-i

f faulty nodes

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f messages as

[PREPARE, v, n, d1, i]SIG-i

f messages as

[PREPARE, v, n, d2, i]SIG-i

f faulty nodes

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f messages as

[PREPARE, v, n, d1, i]SIG-i

f messages as

[PREPARE, v, n, d2, i]SIG-i

f faulty nodes

3f < 3f + 1

Why 2f + 1 (Safety)?

Practical Byzantine Fault Tolerance

f + 1 messages as

[PREPARE, v, n, d1, i]SIG-i

f + 1 messages as

[PREPARE, v, n, d2, i]SIG-i

f faulty nodes

3f + 2 > 3f + 1

