Fuzzy 2

Murat Osmanoglu

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value x maximizes the function f)

- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set
for all $x \operatorname{in} X, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}$
(the possibility that the value \times maximizes the function f)
- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set
for all $x \operatorname{in} X, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}$
(the possibility that the value \times maximizes the function f)
- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set
for all $x \operatorname{in} X, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}$
(the possibility that the value \times maximizes the function f)
- consider the function f given with the following figure

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function $f(x)=\cos x$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function $f(x)=\cos x$ define the maximizing set of $f(x)$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function $f(x)=\cos x$ define the maximizing set of $f(x)$

$$
\mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function $f(x)=\cos x$ define the maximizing set of $f(x)$

$$
\mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}=\frac{\cos x-(-1)}{1-(-1)}
$$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value \times maximizes the function f)

- consider the function $f(x)=\cos x$ define the maximizing set of $f(x)$

$$
\mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}=\frac{\cos x-(-1)}{1-(-1)}=\frac{\cos x+1}{2}
$$

Maximizing and Minimizing Set

- the maximizing set M of a function is defined as a fuzzy set

$$
\text { for all } x \operatorname{in} x, \quad \mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}
$$

(the possibility that the value x maximizes the function f)

- consider the function $f(x)=\cos x$ define the maximizing set of $f(x)$
$\mu_{M}(x)=\frac{f(x)-\inf (f)}{\sup (f)-\inf (f)}=\frac{\cos x-(-1)}{1-(-1)}=\frac{\cos x+1}{2}$
$\mu_{M}(\pi / 3)=\frac{\cos (\pi / 3)+1}{2}=3 / 4$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the integration of F in $X=[1,2]$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the integration of F in $X=[1,2]$

$$
I_{1}(1,2)=\int_{1}^{2} 3 x d x=\frac{9}{2}
$$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the integration of F in $X=[1,2]$

$$
\begin{aligned}
& I_{1}(1,2)=\int_{1}^{2} 3 x d x=\frac{9}{2} \\
& I_{2}(1,2)=\int_{1}^{2} x^{2} d x=\frac{7}{3}
\end{aligned}
$$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the integration of F in $X=[1,2]$

$$
\begin{gathered}
I_{1}(1,2)=\int_{1}^{2} 3 x d x=\frac{9}{2} \\
I_{2}(1,2)=\int_{1}^{2} x^{2} d x=\frac{7}{3} \\
I_{3}(1,2)=\int_{1}^{2}(x-1) d x=\frac{1}{2}
\end{gathered}
$$

Integration of Fuzzy Function

Integration of fuzzifying function in crisp interval

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=3 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the integration of F in $X=[1,2]$

$$
\begin{gathered}
I_{1}(1,2)=\int_{1}^{2} 3 x d x=\frac{9}{2} \\
I_{2}(1,2)=\int_{1}^{2} x^{2} d x=\frac{7}{3} \\
I_{3}(1,2)=\int_{1}^{2}(x-1) d x=\frac{1}{2} \\
\tau(1,2)=\left\{\left(\frac{9}{2}, 0.6\right),\left(\frac{7}{3}, 0.9\right),\left(\frac{1}{2}, 0.5\right)\right\}
\end{gathered}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,),(4,),(8,),(12,),(20,)\}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,0.6),(4,),(8,),(12,),(20,)\}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,0.6),(4,0.7),(8,),(12,),(20,)\}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,0.6),(4,0.7),(8,1.0),(12,),(20,)\}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,0.6),(4,0.7),(8,1.0),(12,0.5),(20,)\}
$$

Integration of Fuzzy Function

Integration of crispfunction in fuzzy interval

- consider the function $f(x)=4$
- calculate the integration of f in $[A, B]$
where $A=\{(1,0.5),(2,1.0),(3,0.7)\}$ and $B=\{(3,0.6),(4,1.0),(5,0.3)\}$
$I(1,3)=8$ with $\min \left\{\mu_{A}(1), \mu_{B}(3)\right\}=0.5$
$I(1,4)=12$ with $\min \left\{\mu_{A}(1), \mu_{B}(4)\right\}=0.5$
$I(1,5)=20$ with $\min \left\{\mu_{A}(1), \mu_{B}(5)\right\}=0.3$
$I(2,3)=4$ with $\min \left\{\mu_{A}(2), \mu_{B}(3)\right\}=0.6$
$I(2,4)=8$ with $\min \left\{\mu_{A}(2), \mu_{B}(4)\right\}=1.0$
$I(2,5)=12$ with $\min \left\{\mu_{A}(2), \mu_{B}(5)\right\}=0.3$
$I(3,3)=0$ with $\min \left\{\mu_{A}(3), \mu_{B}(3)\right\}=0.6$
$I(3,4)=4$ with $\min \left\{\mu_{A}(3), \mu_{B}(4)\right\}=0.7$
$I(3,5)=8$ with $\min \left\{\mu_{A}(3), \mu_{B}(5)\right\}=0.3$

$$
I(A, B)=\{(0,0.6),(4,0.7),(8,1.0),(12,0.5),(20,0.3)\}
$$

Differentiation of Fuzzy Function

 Differentation of fuzzifying function on crisp point
Differentiation of Fuzzy Function

Differentation of fuzzifying function on crisp point

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=4 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$

Differentiation of Fuzzy Function

Differentation of fuzzifying function on crisp point

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=4 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the differentiation of F on $x_{0}=2$

Differentiation of Fuzzy Function

Differentation of fuzzifying function on crisp point

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=4 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the differentiation of F on $x_{0}=2$

$$
f_{1}^{\prime}(x)=4, f_{2}^{\prime}(x)=2 x, f_{3}^{\prime}(x)=1
$$

Differentiation of Fuzzy Function

Differentation of fuzzifying function on crisp point

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=4 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the differentiation of F on $x_{0}=2$

$$
\begin{aligned}
& f_{1}^{\prime}(x)=4, f_{2}^{\prime}(x)=2 x, f_{3}^{\prime}(x)=1 \\
& F^{\prime}(2)=\{(4,0.6),(4,0.9),(1,0.5)\}
\end{aligned}
$$

Differentiation of Fuzzy Function

Differentation of fuzzifying function on crisp point

- consider the fuzzy bunch of function $F=\left\{\left(f_{1}, 0.6\right),\left(f_{2}, 0.9\right),\left(f_{3}, 0.5\right)\right\}$ where $f_{1}(x)=4 x, f_{2}(x)=x^{2}, f_{3}(x)=x-1$
- calculate the differentiation of F on $x_{0}=2$

$$
\begin{aligned}
& f_{1}^{\prime}(x)=4, f_{2}^{\prime}(x)=2 x, f_{3}^{\prime}(x)=1 \\
& F^{\prime}(2)=\{(4,0.6),(4,0.9),(1,0.5)\} \\
& F^{\prime}(2)=\{(4,0.9),(1,0.5)\}
\end{aligned}
$$

Differentiation of Fuzzy Function

 Differentiation of crisp function on fuzzy point
Differentiation of Fuzzy Function

Differentiation of crisp function on fuzzy point

- consider the function $f(x)=3 x^{3}$

Differentiation of Fuzzy Function

Differentiation of crisp function on fuzzy point

- consider the function $f(x)=3 x^{3}$
- calculate differentiation of f at A
where $A=\{(-2,0.5),(0,1.0),(2,0.7)\}$

Differentiation of Fuzzy Function

Differentiation of crisp function on fuzzy point

- consider the function $f(x)=3 x^{3}$
- calculate differentiation of f at A
where $A=\{(-2,0.5),(0,1.0),(2,0.7)\}$

$$
f^{\prime}(x)=9 x^{2}
$$

Differentiation of Fuzzy Function

Differentiation of crisp function on fuzzy point

- consider the function $f(x)=3 x^{3}$
- calculate differentiation of f at A
where $A=\{(-2,0.5),(0,1.0),(2,0.7)\}$

$$
\begin{gathered}
f^{\prime}(x)=9 x^{2} \\
f^{\prime}(A)=\{(36,0.5),(0,1.0),(36,0.7)\}
\end{gathered}
$$

Differentiation of Fuzzy Function

Differentiation of crisp function on fuzzy point

- consider the function $f(x)=3 x^{3}$
- calculate differentiation of f at A
where $A=\{(-2,0.5),(0,1.0),(2,0.7)\}$

$$
\begin{aligned}
& f^{\prime}(x)=9 x^{2} \\
& f^{\prime}(A)=\{(36,0.5),(0,1.0),(36,0.7)\} \\
& f^{\prime}(A)=\{(0,1.0),(36,0.7)\}
\end{aligned}
$$

