Fuzzy 5

Murat Osmanoglu

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D
$\mu(x)$	1.0	0.7	0.4	0.1

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D	
$\mu(x)$	1.0	0.7	0.4	0.1	$0.5-$

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D			
$\mu(x)$	1.0	0.7	0.4	0.1	0.5		less uncertainty
:---:							
high uncertainty							

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D	
$\mu(x)$	1.0	0.7	0.4	0.1	0.5

- Given fuzzy set $A=\{(a, 1.0),(b, 0.7),(c, 0.4),(d, 0.1)\}$,

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D	
$\mu(x)$	1.0	0.7	0.4	0.1	0.5

- Given fuzzy set $A=\{(a, 1.0),(b, 0.7),(c, 0.4),(d, 0.1)\}$, How do we measure the fuzziness of the fuzzy set A ?

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D			
$\mu(x)$	1.0	0.7	0.4	0.1	0.5		less uncertainty
:---:							
high uncertainty							

- Given fuzzy set $A=\{(a, 1.0),(b, 0.7),(c, 0.4),(d, 0.1)\}$, How do we measure the fuzziness of the fuzzy set A ? How do we compare the fuzziness of two fuzzy sets?

Uncertainty

- A, B, C, D organize a chess tournament. The following table shows the possibilities of the players on the tournament

	A	B	C	D			
$\mu(x)$	1.0	0.7	0.4	0.1	0.5		less uncertainty
:---:							
high uncertainty							

- Given fuzzy set $A=\{(a, 1.0),(b, 0.7),(c, 0.4),(d, 0.1)\}$, How do we measure the fuzziness of the fuzzy set A ? How do we compare the fuzziness of two fuzzy sets?

How do we decide which one is more uncertain?

Measure of Fuzziness

$f: P(X) \rightarrow R$
all subsets of the universal set
real numbers

Measure of Fuzziness

$f: P(X) \rightarrow R$

all subsets of the universal set
real numbers

- $f(A)=0$ if A is a crisp set

Measure of Fuzziness

$$
f: P(X) \rightarrow R
$$

all subsets of the universal set
real numbers

- $f(A)=0$ if A is a crisp set
- if the uncertainty of A is less than that of $B, f(A) \leq f(B)$

Measure of Fuzziness

$$
f: P(X) \rightarrow R
$$

all subsets of the universal set
real numbers

- $f(A)=0$ if A is a crisp set
- if the uncertainty of A is less than that of $B, f(A) \leq f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then $f(B)$ should have the maximum value

Measure of Fuzziness

$f: P(X) \rightarrow R$

all subsets of the universal set
real numbers

- $f(A)=0$ if A is a crisp set
- if the uncertainty of A is less than that of $B, f(A) \leq f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then $f(B)$ should have the maximum value
- Given fuzzy sets
$A=\{(a, 1.0),(b, 0.7),(c, 0.4)\}, B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

Measure of Fuzziness

$f: P(X) \rightarrow R$
all subsets of the universal set
real numbers

- $f(A)=0$ if A is a crisp set
- if the uncertainty of A is less than that of $B, f(A) \leq f(B)$
- if the uncertainty is the maximum for a fuzzy set B, then $f(B)$ should have the maximum value
- Given fuzzy sets
$A=\{(a, 1.0),(b, 0.7),(c, 0.4)\}, B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$
$f(A)<f(B)$ and $f(B)$ should be maximum

Measure of Fuzziness

Measure with Entropy

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{gathered}
X=\{00,01,10,11\} \\
p(00)=3 / 4, p(01)=1 / 8, p(10)=1 / 16, p(11)=1 / 16
\end{gathered}
$$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{gathered}
X=\{00,01,10,11\} \\
p(00)=3 / 4, p(01)=1 / 8, p(10)=1 / 16, p(11)=1 / 16 \\
H(p(x))=-(3 / 4) \log (3 / 4)-(1 / 8) \log (1 / 8) \\
-(1 / 16) \log (1 / 16)-(1 / 16) \log (1 / 16)
\end{gathered}
$$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{aligned}
& X=\{00,01,10,11\} \\
& p(00)= 3 / 4, p(01)=1 / 8, p(10)=1 / 16, p(11)=1 / 16 \\
& H(p(x))=-(3 / 4) \log (3 / 4)-(1 / 8) \log (1 / 8) \\
&-(1 / 16) \log (1 / 16)-(1 / 16) \log (1 / 16) \\
& H(p(x))=(3 / 2+3 / 8+1 / 4+1 / 4)-\log 3 \\
& H(p(x)) \approx 0.791
\end{aligned}
$$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{gathered}
X=\{00,01,10,11\} \\
p(00)=1 / 4, p(01)=1 / 4, p(10)=1 / 4, p(11)=1 / 4
\end{gathered}
$$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{gathered}
X=\{00,01,10,11\} \\
p(00)=1 / 4, p(01)=1 / 4, p(10)=1 / 4, p(11)=1 / 4
\end{gathered}
$$

$$
H(p(x))=-(1 / 4) \log (1 / 4)-(1 / 4) \log (1 / 4)
$$

$$
-(1 / 4) \log (1 / 4)-(1 / 4) \log (1 / 4)
$$

Measure of Fuzziness

Measure with Entropy

- Shannon's entropy is used to measure the amount of uncertainty
- $H(p(x))=-\Sigma_{x \text { in } x} p(x) \cdot \log p(x)$

$$
\begin{aligned}
& X=\{00,01,10,11\} \\
& p(00)= 1 / 4, p(01)=1 / 4, p(10)=1 / 4, p(11)=1 / 4 \\
& H(p(x))=-(1 / 4) \log (1 / 4)-(1 / 4) \log (1 / 4) \\
&-(1 / 4) \log (1 / 4)-(1 / 4) \log (1 / 4) \\
& H(p(x))= 1 / 2+1 / 2+1 / 2+1 / 2 \\
& H(p(x))= 2
\end{aligned}
$$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

$$
\begin{array}{r}
f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2 \\
0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)
\end{array}
$$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

$$
\begin{array}{r}
f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2 \\
0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)
\end{array}
$$

$f(A)=2.686$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

$$
\begin{aligned}
& f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2 \\
&0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8) \\
& f(A)=2.686, f^{\prime}(A)=2.686 / 3=0.89
\end{aligned}
$$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2$ $0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)$
$f(A)=2.686, f^{\prime}(A)=2.686 / 3=0.89$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2$
$0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)$
$f(A)=2.686, f^{\prime}(A)=2.686 / 3=0.89$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$
$f(B)=-(0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5$
$0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5)$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2$
$0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)$
$f(A)=2.686, f^{\prime}(A)=2.686 / 3=0.89$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$
$f(B)=-(0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5$
$0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5)$
$f(B)=3$

Measure of Fuzziness

Measure with Entropy

- $f(A)=-\Sigma_{x \text { in } x}\left[\mu_{A}(x) \cdot \log \mu_{A}(x)+\left(1-\mu_{A}(x)\right) \cdot \log \left(1-\mu_{A}(x)\right)\right]$
- the normalized measure $f^{\prime}(A)=f(A) /|X|$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=-(0.6 \log 0.6+0.5 \log 0.5+0.2 \log 0.2$
$0.4 \log 0.4+0.5 \log 0.5+0.8 \log 0.8)$
$f(A)=2.686, f^{\prime}(A)=2.686 / 3=0.89$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$
$f(B)=-(0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5$
$0.5 \log 0.5+0.5 \log 0.5+0.5 \log 0.5)$
$f(B)=3, f^{\prime}(B)=1$

Measure of Fuzziness

Measure with Metric Distance

Measure of Fuzziness
Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

$$
f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)
$$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)$ $f(A)=0.4+0.5+0.2=1.1$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$

$$
\begin{aligned}
& f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|) \\
& f(A)=0.4+0.5+0.2=1.1, f^{\prime}(A)=1.1 / 1.5=0.73
\end{aligned}
$$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)$
$f(A)=0.4+0.5+0.2=1.1, f^{\prime}(A)=1.1 / 1.5=0.73$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)$
$f(A)=0.4+0.5+0.2=1.1, f^{\prime}(A)=1.1 / 1.5=0.73$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

$$
f(B)=(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|)
$$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 I X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)$
$f(A)=0.4+0.5+0.2=1.1, f^{\prime}(A)=1.1 / 1.5=0.73$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

$$
\begin{aligned}
& f(B)=(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|) \\
& f(B)=0.5+0.5+0.5=1.5
\end{aligned}
$$

Measure of Fuzziness

Measure with Metric Distance

- $f(A)=\Sigma_{x \text { in } x}\left(0.5-\left|\mu_{A}(x)-0.5\right|\right)$
- the normalized measure $f^{\prime}(A)=f(A) /(0.5 \mid X I)$
- $A=\{(a, 0.6),(b, 0.5),(c, 0.2)\}$
$f(A)=(0.5-|0.6-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.2-0.5|)$
$f(A)=0.4+0.5+0.2=1.1, f^{\prime}(A)=1.1 / 1.5=0.73$
- $B=\{(a, 0.5),(b, 0.5),(c, 0.5)\}$

$$
\begin{aligned}
& f(B)=(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|)+(0.5-|0.5-0.5|) \\
& f(B)=0.5+0.5+0.5=1.5, f^{\prime}(B)=1.5 / 1.5=1
\end{aligned}
$$

